zmiana koloru podgrafu na wykresie igraph
Mam następujący kod do wykreślenia minimalnego drzewa rozpinającego wykresu
## g is an igraph graph
mst = minimum.spanning.tree(g)
E(g)$color <- "SkyBlue2"
## how to I make mst a different color
E(g)[E(mst)]$color = "red" ### <---- I WANT TO DO ESSENTIALLY THIS
plot(g, edge.label=E(g)$weight)
Oznacza to, że dla prostego wykresu znajduję mst. Chcę zmienić mst na czerwony i narysować mst jako część głównego wykresu. Aby to zrobić, chcę wybrać krawędzieg
które są również wmst
. Jak mam to zrobic?
AKTUALIZACJA:
Bardziej ogólnie, mam wykresg0
który jest mstg
, który man
wierzchołki. Został zbudowany w następujący sposób
## implementing the Dijkstra-Prim algorithm
v0 = sample(1:n, 1)
g0 = graph.empty(n=n, directed=FALSE)
weight.g0 = 0
while(length(setdiff(1:n, v0) > 0)) {
## chose the shortest edge in the cut set of g
## to find the cut, figure out the set of edges where vertex is
## in v0 and the other is not
cutset = E(g)[ v0 %->% setdiff(1:n, v0)]
## find the lightest weight edge
cutweights = E(g)$weight[cutset]
lightest_edge_idx = which(cutweights == min(cutweights))[1]
weight.g0 = weight.g0 + min(cutweights)
## get the vertices of the lightest weight edge, add to path
lightest_edge = cutset[as.numeric(cutset)[lightest_edge_idx]]
vertices = get.edges(g, as.numeric(lightest_edge))
g0 <- add.edges(g0, vertices, weight=min(cutweights))
## now that we have the vertices, add the one that is not in the
## graph already
for(vtx in vertices) {
if(!(vtx %in% v0)) {
v0 = c(vtx, v0)
}
}
}
Wiem, że prawdopodobnie nie używam wielu przydatnych funkcji igraph, ale dostajęg0
być mst na końcu tej pętli. Biorąc to pod uwagę, mam
E(g0)
Edge sequence:
[1] 8 -- 1
[2] 2 -- 1
[3] 9 -- 8
[4] 9 -- 5
[5] 3 -- 2
[6] 4 -- 3
[7] 7 -- 3
[8] 11 -- 4
[9] 7 -- 6
[10] 11 -- 10
> E(g)
Edge sequence:
[1] 2 -- 1
[2] 5 -- 1
[3] 8 -- 1
[4] 3 -- 2
[5] 5 -- 2
[6] 6 -- 2
[7] 4 -- 3
[8] 6 -- 3
[9] 7 -- 3
[10] 7 -- 4
[11] 11 -- 4
[12] 6 -- 5
[13] 8 -- 5
[14] 9 -- 5
[15] 7 -- 6
[16] 9 -- 6
[17] 10 -- 6
[18] 10 -- 7
[19] 11 -- 7
[20] 9 -- 8
[21] 10 -- 9
[22] 11 -- 10
Moje pytanie brzmiało: jak przypisać atrybut do krawędzi w E (g), które są również w E (g0)?