Ejemplo de validación cruzada 10 veces con clasificación de red neuronal en MATLAB
Estoy buscando un ejemplo de aplicación de la validación cruzada 10 veces en la red neuronal. Necesito un enlace de respuesta a esta pregunta:Ejemplo de clasificación SVM 10 veces en MATLAB
Me gustaría clasificar las 3 clases, mientras que en el ejemplo solo se consideraron dos clases.
Editar: aquí está el código que escribí para el ejemplo de iris
load fisheriris %# load iris dataset
k=10;
cvFolds = crossvalind('Kfold', species, k); %# get indices of 10-fold CV
net = feedforwardnet(10);
for i = 1:k %# for each fold
testIdx = (cvFolds == i); %# get indices of test instances
trainIdx = ~testIdx; %# get indices training instances
%# train
net = train(net,meas(trainIdx,:)',species(trainIdx)');
%# test
outputs = net(meas(trainIdx,:)');
errors = gsubtract(species(trainIdx)',outputs);
performance = perform(net,species(trainIdx)',outputs)
figure, plotconfusion(species(trainIdx)',outputs)
end
error dado por matlab:
Error using nntraining.setup>setupPerWorker (line 62)
Targets T{1,1} is not numeric or logical.
Error in nntraining.setup (line 43)
[net,data,tr,err] = setupPerWorker(net,trainFcn,X,Xi,Ai,T,EW,enableConfigure);
Error in network/train (line 335)
[net,data,tr,err] = nntraining.setup(net,net.trainFcn,X,Xi,Ai,T,EW,enableConfigure,isComposite);
Error in Untitled (line 17)
net = train(net,meas(trainIdx,:)',species(trainIdx)');