¿Por qué mi modelo CIFAR 100 CNN predice principalmente dos clases?

Actualmente estoy tratando de obtener una puntuación decente (> 40% de precisión) con Keras en CIFAR 100. Sin embargo, estoy experimentando un comportamiento extraño de un modelo CNN: tiende a predecir algunas clases (2-5) con mucha más frecuencia que otros:

El píxel en la posición (i, j) contiene el recuento de cuántos elementos del conjunto de validación de la clase i se predijo que serían de la clase j. Por lo tanto, la diagonal contiene las clasificaciones correctas, todo lo demás es un error. Las dos barras verticales indican que el modelo a menudo predice esas clases, aunque no es el caso.

CIFAR 100 está perfectamente equilibrado: las 100 clases tienen 500 muestras de entrenamiento.

¿Por qué el modelo tiende a predecir algunas clases MUCHO más a menudo que otras clases? ¿Cómo se puede arreglar esto?

El código

Ejecutar esto lleva un tiempo.

#!/usr/bin/env python

from __future__ import print_function
from keras.datasets import cifar100
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from sklearn.model_selection import train_test_split
import numpy as np

batch_size = 32
nb_classes = 100
nb_epoch = 50
data_augmentation = True

# input image dimensions
img_rows, img_cols = 32, 32
# The CIFAR10 images are RGB.
img_channels = 3

# The data, shuffled and split between train and test sets:
(X, y), (X_test, y_test) = cifar100.load_data()
X_train, X_val, y_train, y_val = train_test_split(X, y,
                                                  test_size=0.20,
                                                  random_state=42)

# Shuffle training data
perm = np.arange(len(X_train))
np.random.shuffle(perm)
X_train = X_train[perm]
y_train = y_train[perm]

print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_val.shape[0], 'validation samples')
print(X_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices.
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
Y_val = np_utils.to_categorical(y_val, nb_classes)

model = Sequential()

model.add(Convolution2D(32, 3, 3, border_mode='same',
                        input_shape=X_train.shape[1:]))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Convolution2D(64, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

X_train = X_train.astype('float32')
X_val = X_val.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_val /= 255
X_test /= 255

if not data_augmentation:
    print('Not using data augmentation.')
    model.fit(X_train, Y_train,
              batch_size=batch_size,
              nb_epoch=nb_epoch,
              validation_data=(X_val, y_val),
              shuffle=True)
else:
    print('Using real-time data augmentation.')
    # This will do preprocessing and realtime data augmentation:
    datagen = ImageDataGenerator(
        featurewise_center=False,  # set input mean to 0 over the dataset
        samplewise_center=False,  # set each sample mean to 0
        featurewise_std_normalization=False,  # divide inputs by std of the dataset
        samplewise_std_normalization=False,  # divide each input by its std
        zca_whitening=False,  # apply ZCA whitening
        rotation_range=0,  # randomly rotate images in the range (degrees, 0 to 180)
        width_shift_range=0.1,  # randomly shift images horizontally (fraction of total width)
        height_shift_range=0.1,  # randomly shift images vertically (fraction of total height)
        horizontal_flip=True,  # randomly flip images
        vertical_flip=False)  # randomly flip images

    # Compute quantities required for featurewise normalization
    # (std, mean, and principal components if ZCA whitening is applied).
    datagen.fit(X_train)

    # Fit the model on the batches generated by datagen.flow().
    model.fit_generator(datagen.flow(X_train, Y_train,
                                     batch_size=batch_size),
                        samples_per_epoch=X_train.shape[0],
                        nb_epoch=nb_epoch,
                        validation_data=(X_val, Y_val))
    model.save('cifar100.h5')
Código de visualización
#!/usr/bin/env python


"""Analyze a cifar100 keras model."""

from keras.models import load_model
from keras.datasets import cifar100
from sklearn.model_selection import train_test_split
import numpy as np
import json
import io
import matplotlib.pyplot as plt
try:
    to_unicode = unicode
except NameError:
    to_unicode = str

n_classes = 100


def plot_cm(cm, zero_diagonal=False):
    """Plot a confusion matrix."""
    n = len(cm)
    size = int(n / 4.)
    fig = plt.figure(figsize=(size, size), dpi=80, )
    plt.clf()
    ax = fig.add_subplot(111)
    ax.set_aspect(1)
    res = ax.imshow(np.array(cm), cmap=plt.cm.viridis,
                    interpolation='nearest')
    width, height = cm.shape
    fig.colorbar(res)
    plt.savefig('confusion_matrix.png', format='png')

# Load model
model = load_model('cifar100.h5')

# Load validation data
(X, y), (X_test, y_test) = cifar100.load_data()

X_train, X_val, y_train, y_val = train_test_split(X, y,
                                                  test_size=0.20,
                                                  random_state=42)

# Calculate confusion matrix
y_val_i = y_val.flatten()
y_val_pred = model.predict(X_val)
y_val_pred_i = y_val_pred.argmax(1)
cm = np.zeros((n_classes, n_classes), dtype=np.int)
for i, j in zip(y_val_i, y_val_pred_i):
    cm[i][j] += 1

acc = sum([cm[i][i] for i in range(100)]) / float(cm.sum())
print("Validation accuracy: %0.4f" % acc)

# Create plot
plot_cm(cm)

# Serialize confusion matrix
with io.open('cm.json', 'w', encoding='utf8') as outfile:
  ,  str_ = json.dumps(cm.tolist(),
                      indent=4, sort_keys=True,
                      separators=(',', ':'), ensure_ascii=False)
    outfile.write(to_unicode(str_))
pistas falsastanh

He reemplazadotanh porrelu. loshistoria csv se ve bien, pero la visualización tiene el mismo problema:

Tenga en cuenta también que la precisión de validación aquí es solo del 3,44%.

Dropout + tanh + border mode

Eliminando el abandono, reemplazando tanh por relu, configurando el modo de borde en el mismo en todas partes:historia csv

El código de visualización aún ofrece una precisión mucho menor (8.50% esta vez) que el código de entrenamiento keras.

Preguntas y respuestas

El siguiente es un resumen de los comentarios:

Los datos se distribuyen uniformemente entre las clases. Así que no hay "sobre entrenamiento" de esas dos clases.Se utiliza el aumento de datos, pero sin el aumento de datos el problema persiste.La visualización no es el problema.

Respuestas a la pregunta(4)

Su respuesta a la pregunta