Implementación de reconocimiento facial Circular LBP uniforme

Estoy tratando de implementar un sistema básico de reconocimiento facial utilizando LBP circular uniforme (8 puntos en un radio de vecindad de 1 unidad). Estoy tomando una imagen,redimensionándolo a 200 x 200 píxeles y luegoDividiendo la imagen en 8x8 pequeñas imágenes.. Luego calculo el histograma para cada pequeña imagen yobtener una lista de histogramas. Acompara 2 imágenes, Calculo la distancia chi-cuadrada entre los histogramas correspondientes y genero una puntuación.

Aquí está mi implementación de Uniform LBP:

import numpy as np
import math
uniform = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 58, 6: 5, 7: 6, 8: 7, 9: 58, 10: 58, 11: 58, 12: 8, 13: 58, 14: 9, 15: 10, 16: 11, 17: 58, 18: 58, 19: 58, 20: 58, 21: 58, 22: 58, 23: 58, 24: 12, 25: 58, 26: 58, 27: 58, 28: 13, 29: 58, 30: 14, 31: 15, 32: 16, 33: 58, 34: 58, 35: 58, 36: 58, 37: 58, 38: 58, 39: 58, 40: 58, 41: 58, 42: 58, 43: 58, 44: 58, 45: 58, 46: 58, 47: 58, 48: 17, 49: 58, 50: 58, 51: 58, 52: 58, 53: 58, 54: 58, 55: 58, 56: 18, 57: 58, 58: 58, 59: 58, 60: 19, 61: 58, 62: 20, 63: 21, 64: 22, 65: 58, 66: 58, 67: 58, 68: 58, 69: 58, 70: 58, 71: 58, 72: 58, 73: 58, 74: 58, 75: 58, 76: 58, 77: 58, 78: 58, 79: 58, 80: 58, 81: 58, 82: 58, 83: 58, 84: 58, 85: 58, 86: 58, 87: 58, 88: 58, 89: 58, 90: 58, 91: 58, 92: 58, 93: 58, 94: 58, 95: 58, 96: 23, 97: 58, 98: 58, 99: 58, 100: 58, 101: 58, 102: 58, 103: 58, 104: 58, 105: 58, 106: 58, 107: 58, 108: 58, 109: 58, 110: 58, 111: 58, 112: 24, 113: 58, 114: 58, 115: 58, 116: 58, 117: 58, 118: 58, 119: 58, 120: 25, 121: 58, 122: 58, 123: 58, 124: 26, 125: 58, 126: 27, 127: 28, 128: 29, 129: 30, 130: 58, 131: 31, 132: 58, 133: 58, 134: 58, 135: 32, 136: 58, 137: 58, 138: 58, 139: 58, 140: 58, 141: 58, 142: 58, 143: 33, 144: 58, 145: 58, 146: 58, 147: 58, 148: 58, 149: 58, 150: 58, 151: 58, 152: 58, 153: 58, 154: 58, 155: 58, 156: 58, 157: 58, 158: 58, 159: 34, 160: 58, 161: 58, 162: 58, 163: 58, 164: 58, 165: 58, 166: 58, 167: 58, 168: 58, 169: 58, 170: 58, 171: 58, 172: 58, 173: 58, 174: 58, 175: 58, 176: 58, 177: 58, 178: 58, 179: 58, 180: 58, 181: 58, 182: 58, 183: 58, 184: 58, 185: 58, 186: 58, 187: 58, 188: 58, 189: 58, 190: 58, 191: 35, 192: 36, 193: 37, 194: 58, 195: 38, 196: 58, 197: 58, 198: 58, 199: 39, 200: 58, 201: 58, 202: 58, 203: 58, 204: 58, 205: 58, 206: 58, 207: 40, 208: 58, 209: 58, 210: 58, 211: 58, 212: 58, 213: 58, 214: 58, 215: 58, 216: 58, 217: 58, 218: 58, 219: 58, 220: 58, 221: 58, 222: 58, 223: 41, 224: 42, 225: 43, 226: 58, 227: 44, 228: 58, 229: 58, 230: 58, 231: 45, 232: 58, 233: 58, 234: 58, 235: 58, 236: 58, 237: 58, 238: 58, 239: 46, 240: 47, 241: 48, 242: 58, 243: 49, 244: 58, 245: 58, 246: 58, 247: 50, 248: 51, 249: 52, 250: 58, 251: 53, 252: 54, 253: 55, 254: 56, 255: 57}


def bilinear_interpolation(i, j, y, x, img):
    fy, fx = int(y), int(x)
    cy, cx = math.ceil(y), math.ceil(x)

    # calculate the fractional parts
    ty = y - fy
    tx = x - fx

    w1 = (1 - tx) * (1 - ty)
    w2 =      tx  * (1 - ty)
    w3 = (1 - tx) *      ty
    w4 =      tx  *      ty

    return w1 * img[i + fy, j + fx] + w2 * img[i + fy, j + cx] + \
           w3 * img[i + cy, j + fx] + w4 * img[i + cy, j + cx]

def thresholded(center, pixels):
    out = []
    for a in pixels:
        if a > center:
            out.append(1)
        else:
            out.append(0)
    return out


def uniform_circular(img, P, R):
    ysize, xsize = img.shape
    transformed_img = np.zeros((ysize - 2 * R,xsize - 2 * R), dtype=np.uint8)
    for y in range(R, len(img) - R):
        for x in range(R, len(img[0]) - R):
            center = img[y,x]
            pixels = []
            for point in range(0, P):
                r = R * math.cos(2 * math.pi * point / P)
                c = R * math.sin(2 * math.pi * point / P)
                pixels.append(bilinear_interpolation(y, x, r, c, img))

            values = thresholded(center, pixels)
            res = 0
            for a in range(0, P):
                    res += values[a] << a
            transformed_img.itemset((y - R,x - R), uniform[res])

    transformed_img = transformed_img[R:-R,R:-R]
    return transformed_img

Hice un experimento enBase de datos de AT&T tomando 2 imágenes de galería y 8 imágenes de sonda por tema. La ROC para el experimento resultó ser:

En el ROC anterior,El eje x denota la tasa de aceptación falsa y elEl eje y denota la tasa de aceptación genuina. La precisión parece ser baja según los estándares de Uniform LBP. Estoy seguro de que hay algo mal con mi implementación. Sería genial si alguien pudiera ayudarme con eso. Gracias por leer.

EDITAR:

Creo que cometí un error en el código anterior. Voy en el sentido de las agujas del reloj, mientras que el artículo sobre LBP sugiere que debo ir en sentido contrario a las agujas del reloj al asignar pesos. La línea:c = R * math.sin(2 * math.pi * point / P) debiera serc = -R * math.sin(2 * math.pi * point / P). Los resultados después de la edición son aún peores. Esto sugiere que algo está mal con mi código. Creo que la forma en que estoy eligiendo las coordenadas para la interpolación está en mal estado.

Edición: a continuación intenté replicar el código de @ bytefishaquí y usó el mapa de hash uniforme para hacer la implementación de Circular Circular LBP.

def uniform_circular(img, P, R):
    ysize, xsize = img.shape
    transformed_img = np.zeros((ysize - 2 * R,xsize - 2 * R), dtype=np.uint8)
    for point in range(0, P):
        x = R * math.cos(2 * math.pi * point / P)
        y = -R * math.sin(2 * math.pi * point / P)
        fy, fx = int(y), int(x)
        cy, cx = math.ceil(y), math.ceil(x)

        # calculate the fractional parts
        ty = y - fy
        tx = x - fx

        w1 = (1 - tx) * (1 - ty)
        w2 =      tx  * (1 - ty)
        w3 = (1 - tx) *      ty
        w4 =      tx  *      ty 
        for i in range(R, ysize - R):
            for j in range(R, xsize - R):
                t = w1 * img[i + fy, j + fx] + w2 * img[i + fy, j + cx] + \
                    w3 * img[i + cy, j + fx] + w4 * img[i + cy, j + cx]
                center = img[i,j]
                pixels = []
                res = 0
                transformed_img[i - R,j - R] += (t > center) << point

    for i in range(R, ysize - R):
        for j in range(R, xsize - R):
            transformed_img[i - R,j - R] = uniform[transformed_img[i - R,j - R]]

Aquí está el ROC para el mismo:

Intenté implementar el mismo código en C ++. Aquí está el código:

#include <stdio.h>
#include <stdlib.h>
#include <opencv2/opencv.hpp>

using namespace cv;

int* uniform_circular_LBP_histogram(Mat& src) {
 int i, j;
 int radius = 1;
 int neighbours = 8;
 Size size = src.size();
 int *hist_array = (int *)calloc(59,sizeof(int));
 int uniform[] = {0,1,2,3,4,58,5,6,7,58,58,58,8,58,9,10,11,58,58,58,58,58,58,58,12,58,58,58,13,58,14,15,16,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,17,58,58,58,58,58,58,58,18,58,58,58,19,58,20,21,22,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,23,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,24,58,58,58,58,58,58,58,25,58,58,58,26,58,27,28,29,30,58,31,58,58,58,32,58,58,58,58,58,58,58,33,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,34,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,35,36,37,58,38,58,58,58,39,58,58,58,58,58,58,58,40,58,58,58,58,58,58,58,58,58,58,58,58,58,58,58,41,42,43,58,44,58,58,58,45,58,58,58,58,58,58,58,46,47,48,58,49,58,58,58,50,51,52,58,53,54,55,56,57};
 Mat dst = Mat::zeros(size.height - 2 * radius, size.width - 2 * radius, CV_8UC1);

 for (int n = 0; n < neighbours; n++) {
   float x = static_cast<float>(radius) *  cos(2.0 * M_PI * n / static_cast<float>(neighbours));
   float y = static_cast<float>(radius) * -sin(2.0 * M_PI * n / static_cast<float>(neighbours));

   int fx = static_cast<int>(floor(x));
   int fy = static_cast<int>(floor(y));
   int cx = static_cast<int>(ceil(x));
   int cy = static_cast<int>(ceil(x));

   float ty = y - fy;
   float tx = y - fx;

   float w1 = (1 - tx) * (1 - ty);
   float w2 =      tx  * (1 - ty);
   float w3 = (1 - tx) *      ty;
   float w4 = 1 - w1 - w2 - w3;

   for (i = 0; i < 59; i++) {
     hist_array[i] = 0;
   }

   for (i = radius; i < size.height - radius; i++) {
     for (j = radius; j < size.width - radius; j++) {
       float t = w1 * src.at<uchar>(i + fy, j + fx) + \
                 w2 * src.at<uchar>(i + fy, j + cx) + \
                 w3 * src.at<uchar>(i + cy, j + fx) + \
                 w4 * src.at<uchar>(i + cy, j + cx);
       dst.at<uchar>(i - radius, j - radius) += ((t > src.at<uchar>(i,j)) && \
                                                 (abs(t - src.at<uchar>(i,j)) > std::numeric_limits<float>::epsilon())) << n;
     }
   }
 }

 for (i = radius; i < size.height - radius; i++) {
   for (j = radius; j < size.width - radius; j++) {
       int val = uniform[dst.at<uchar>(i - radius, j - radius)];
       dst.at<uchar>(i - radius, j - radius) = val;
       hist_array[val] += 1;
   }
 }
 return hist_array;
}

int main( int argc, char** argv )
{
 Mat src;

 int i,j;
 src = imread( argv[1], 0 );
 if( argc != 2 || !src.data )
   {
     printf( "No image data \n" );
     return -1;
   }

 const int width = 200;
 const int height = 200;
 Size size = src.size();
 Size new_size = Size();
 new_size.height = 200;
 new_size.width  = 200;
 Mat resized_src;
 resize(src, resized_src, new_size, 0, 0, INTER_CUBIC);

 int count = 1;
 for (i = 0; i <= width - 8; i += 25) {
   for (j = 0; j <= height - 8; j += 25) {
     Mat new_mat = resized_src.rowRange(i, i + 25).colRange(j, j + 25);
     int *hist = uniform_circular_LBP_histogram(new_mat);
     int z;
     for (z = 0; z < 58; z++) {
       std::cout << hist[z] << ",";
     }
     std::cout << hist[z] << "\n";
     count += 1;
   }
 }
 return 0;
}

ROC para el mismo:

También hice un experimento basado en rangos. Y consiguió esta curva CMC.

Algunos detalles sobre la curva CMC: el eje X representa rangos. (1-10) y el eje Y representa la precisión (0-1). Por lo tanto, tengo una precisión de 80% + Rango1.

Respuestas a la pregunta(2)

Su respuesta a la pregunta