Двоичная классификация в TensorFlow, неожиданные большие значения для потерь и точности

Я пытаюсь использовать глубокую архитектуру нейронной сети для классификации по значению двоичной метки - -1 и +1. Вот мой код, чтобы сделать это вtensorflow.

import tensorflow as tf
import numpy as np
from preprocess import create_feature_sets_and_labels

train_x,train_y,test_x,test_y = create_feature_sets_and_labels()

x = tf.placeholder('float', [None, 5])
y = tf.placeholder('float')

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 1
batch_size = 100

def neural_network_model(data):

    hidden_1_layer = {'weights':tf.Variable(tf.random_normal([5, n_nodes_hl1])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}

    hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}

    hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
                      'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}

    output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
                      'biases':tf.Variable(tf.random_normal([n_classes]))}


    l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
    l1 = tf.nn.relu(l1)

    l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
    l2 = tf.nn.relu(l2)

    l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
    l3 = tf.nn.relu(l3)

    output = tf.transpose(tf.add(tf.matmul(l3, output_layer['weights']), output_layer['biases']))
    return output



def train_neural_network(x):
    prediction = neural_network_model(x)
    cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(prediction, y))
    optimizer = tf.train.AdamOptimizer().minimize(cost)

    hm_epochs = 10

    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())

        for epoch in range(hm_epochs):
            epoch_loss = 0
            i = 0
            while i < len(train_x):
                start = i
                end = i + batch_size
                batch_x = np.array(train_x[start:end])
                batch_y = np.array(train_y[start:end])

                _, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
                                              y: batch_y})
                epoch_loss += c
                i+=batch_size

            print('Epoch', epoch, 'completed out of', hm_epochs, 'loss:', epoch_loss)

        # correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
        # accuracy = tf.reduce_mean(tf.cast(correct, 'float'))

        print (test_x.shape)
        accuracy = tf.nn.l2_loss(prediction-y,name="squared_error_test_cost")/test_x.shape[0]
        print('Accuracy:', accuracy.eval({x: test_x, y: test_y}))

train_neural_network(x)

Это вывод, который я получаю при запуске этого:

('Epoch', 0, 'completed out of', 10, 'loss:', -8400.2424869537354)
('Epoch', 1, 'completed out of', 10, 'loss:', -78980.956665039062)
('Epoch', 2, 'completed out of', 10, 'loss:', -152401.86713409424)
('Epoch', 3, 'completed out of', 10, 'loss:', -184913.46441650391)
('Epoch', 4, 'completed out of', 10, 'loss:', -165563.44775390625)
('Epoch', 5, 'completed out of', 10, 'loss:', -360394.44857788086)
('Epoch', 6, 'completed out of', 10, 'loss:', -475697.51550292969)
('Epoch', 7, 'completed out of', 10, 'loss:', -588638.92993164062)
('Epoch', 8, 'completed out of', 10, 'loss:', -745006.15966796875)
('Epoch', 9, 'completed out of', 10, 'loss:', -900172.41955566406)
(805, 5)
('Accuracy:', 5.8077128e+09)

Я не понимаю, правильны ли значения, которые я получаю, потому что существует реальная нехватка примеров двоичной классификации не-MNIST. Точность совсем не такая, как я ожидал. Я ожидал процент вместо этого большого значения.

Я также несколько не уверен в теории машинного обучения, поэтому я не могу сказать правильность моего подхода с использованием тензорного потока.

Может кто-нибудь сказать мне, если мой подход к бинарной классификации является правильным? Также верна ли точность моего кода?