TypeError al entrenar Tensorflow Random Forest usando TensorForestEstimator

Me sale un error de tipo cuando intento entrenar un bosque aleatorio de Tensorflow usando TensorForestEstimator.

TypeError: Input 'input_data' of 'CountExtremelyRandomStats' Op has type float64 that does not match expected type of float32.

He intentado usar Python 2.7 y Python 3, y he intentado usar tf.cast () para poner todo en float32 pero no ayuda. He comprobado el tipo de datos en la ejecución y es float32. El problema no parece ser los datos que proporciono (csv de todos los flotantes), por lo que no estoy seguro de a dónde ir desde aquí.

Cualquier sugerencia de cosas que pueda probar sería muy apreciada.

Código:

# Build an estimator.
def build_estimator(model_dir):
  params = tensor_forest.ForestHParams(
      num_classes=2, num_features=760,
      num_trees=FLAGS.num_trees, max_nodes=FLAGS.max_nodes)
  graph_builder_class = tensor_forest.RandomForestGraphs
  if FLAGS.use_training_loss:
    graph_builder_class = tensor_forest.TrainingLossForest
  # Use the SKCompat wrapper, which gives us a convenient way to split in-memory data into batches.
  return estimator.SKCompat(random_forest.TensorForestEstimator(params, graph_builder_class=graph_builder_class, model_dir=model_dir))


# Train and evaluate the model.
def train_and_eval():

  # load datasets
  training_set = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_train.csv', dtype=np.float32, header=None)
  test_set = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_test.csv', dtype=np.float32, header=None)

  print('###########')
  print(training_set.loc[:,1].dtype)  # this prints float32

  # load labels
  training_labels = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_train_class.csv', dtype=np.int32, names=LABEL, header=None)
  test_labels = pd.read_csv('/Users/carl/Dropbox/Docs/Python/randomforest_balanced_test_class.csv', dtype=np.int32, names=LABEL, header=None)

  # define the path where the model will be stored - default is current directory
  model_dir = tempfile.mkdtemp() if not FLAGS.model_dir else FLAGS.model_dir
  print('model directory = %s' % model_dir)

  # build the random forest estimator
  est = build_estimator(model_dir)

  tf.cast(training_set, tf.float32) #error occurs with/without casts
  tf.cast(test_set, tf.float32)
  # train the forest to fit the training data
  est.fit(x=training_set, y=training_labels)  #this line throws the error

Respuestas a la pregunta(1)

Su respuesta a la pregunta