Cálculo de la convolución de dos funciones mediante FFT (FFTW)

Estoy tratando de acelerar un cálculo para un simulador neural utilizando la FFT.

La ecuación es:

(1) \ suma (j = 1 a N) (w (i - j) * s_NMDA [j])

donde s_NMDA es un vector de longitud N y w se define por:

(2) w (j) = tanh [1 / (2 * sigma * p)] * exp (-abs (j) / (sigma * p)]

donde sigma y p son constantes.

(¿Hay una mejor manera de representar ecuaciones en stackoverflow?)

El cálculo debe hacerse para N neuronas. Como (1) solo depende de la distancia absoluta abs (i - j), debería ser posible calcular esto usando la FFT (teorema de convolución).

He intentado implementar esto utilizando FFTW pero los resultados no coinciden con los resultados esperados. Nunca he usado FFTW antes y ahora no estoy seguro si mi implementación es incorrecta o si mis suposiciones sobre el teorema de convolución son falsas.

void f_I_NMDA_FFT(
    const double     **states, // states[i][6] == s_NMDA[i]
    const unsigned int numNeurons)
{
    fftw_complex *distances, *sNMDAs, *convolution;
    fftw_complex *distances_f, *sNMDAs_f, *convolution_f;
    fftw_plan     p, pinv;
    const double scale = 1./numNeurons;

        distances = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
        sNMDAs    = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
        convolution = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
        distances_f = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
        sNMDAs_f    = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);
        convolution_f    = (fftw_complex *)fftw_malloc(sizeof(fftw_complex) * numNeurons);

        // fill input array for distances  
    for (unsigned int i = 0; i < numNeurons; ++i)
    {
        distances[i][0] = w(i);
        distances[i][1] = 0;
    }

        // fill input array for sNMDAs
    for (unsigned int i = 0; i < numNeurons; ++i)
    {
        sNMDAs[i][0] = states[i][6];
        sNMDAs[i][1] = 0;
    }

    p = fftw_plan_dft_1d(numNeurons,
                         distances,
                         distances_f,
                         FFTW_FORWARD,
                         FFTW_ESTIMATE);
    fftw_execute(p);

    p = fftw_plan_dft_1d(numNeurons,
                         sNMDAs,
                         sNMDAs_f,
                         FFTW_FORWARD,
                         FFTW_ESTIMATE);
    fftw_execute(p);

    // convolution in frequency domain
    for(unsigned int i = 0; i < numNeurons; ++i)
    {
        convolution_f[i][0] = (distances_f[i][0] * sNMDAs_f[i][0]
            - distances_f[i][1] * sNMDAs_f[i][1]) * scale;
        convolution_f[i][1] = (distances_f[i][0] * sNMDAs_f[i][1]
            - distances_f[i][1] * sNMDAs_f[i][0]) * scale;
    }

    pinv = fftw_plan_dft_1d(numNeurons,
                            convolution_f,
                            convolution,
                            FFTW_FORWARD,
                            FFTW_ESTIMATE);
    fftw_execute(pinv);

    // compute and compare with expected result
    for (unsigned int i = 0; i < numNeurons; ++i)
    {
            double expected = 0;

            for (int j = 0; j < numNeurons; ++j)
            {
                expected += w(i - j) * states[j][6];
            }
            printf("i=%d, FFT: r%f, i%f : Expected: %f\n", i, convolution[i][0], convolution[i][1], expected);
    }

    fftw_destroy_plan(p);
    fftw_destroy_plan(pinv);

    fftw_free(distances), fftw_free(sNMDAs), fftw_free(convolution);
    fftw_free(distances_f), fftw_free(sNMDAs_f), fftw_free(convolution_f);

Aquí hay un ejemplo de salida para 20 neuronas:

i=0, FFT: r0.042309, i0.000000 : Expected: 0.041504
i=1, FFT: r0.042389, i0.000000 : Expected: 0.042639
i=2, FFT: r0.042466, i0.000000 : Expected: 0.043633
i=3, FFT: r0.042543, i0.000000 : Expected: 0.044487
i=4, FFT: r0.041940, i0.000000 : Expected: 0.045203
i=5, FFT: r0.041334, i0.000000 : Expected: 0.045963
i=6, FFT: r0.041405, i0.000000 : Expected: 0.046585
i=7, FFT: r0.041472, i0.000000 : Expected: 0.047070
i=8, FFT: r0.041537, i0.000000 : Expected: 0.047419
i=9, FFT: r0.041600, i0.000000 : Expected: 0.047631
i=10, FFT: r0.041660, i0.000000 : Expected: 0.047708
i=11, FFT: r0.041717, i0.000000 : Expected: 0.047649
i=12, FFT: r0.041773, i0.000000 : Expected: 0.047454
i=13, FFT: r0.041826, i0.000000 : Expected: 0.047123
i=14, FFT: r0.041877, i0.000000 : Expected: 0.046656
i=15, FFT: r0.041926, i0.000000 : Expected: 0.046052
i=16, FFT: r0.041294, i0.000000 : Expected: 0.045310
i=17, FFT: r0.042059, i0.000000 : Expected: 0.044430
i=18, FFT: r0.042144, i0.000000 : Expected: 0.043412
i=19, FFT: r0.042228, i0.000000 : Expected: 0.042253

Los resultados parecen ser casi correctos, pero el error aumenta con el número de neuronas. Además, los resultados parecen ser más precisos para las posiciones (i) que son muy bajas o muy altas. ¿Que está pasando aqui?

Actualizar: Como lo sugirió Oli Charlesworth, implementé el algoritmo en octava para ver si se trata de un problema de implementación o matemático:

input = [0.186775; 0.186775; 0.186775; 0.186775; 0.186775; 0; 0.186775; 0.186775; 0.186775; 0.186775];

function ret = _w(i)
  ret = tanh(1 / (2* 1 * 32)) * exp(-abs(i) / (1 * 32));
end

for i = linspace(1, 10, 10)
  expected = 0;
  for j = linspace(1, 10, 10)
    expected += _w(i-j) * input(j);
  end
  expected
end

distances = _w(transpose(linspace(0, 9, 10)));

input_f = fft(input);
distances_f = fft(distances);

convolution_f = input_f .* distances_f;

convolution = ifft(convolution_f)

Resultados:

expected =  0.022959
expected =  0.023506
expected =  0.023893
expected =  0.024121
expected =  0.024190
expected =  0.024100
expected =  0.024034
expected =  0.023808
expected =  0.023424
expected =  0.022880
convolution =

   0.022959
   0.023036
   0.023111
   0.023183
   0.023253
   0.022537
   0.022627
   0.022714
   0.022798
   0.022880

Los resultados son muy parecidos. Por lo tanto, debe haber algo malo en mi comprensión del teorema de convolución / FFT.

Respuestas a la pregunta(2)

Su respuesta a la pregunta