Cómo crear una lista de vectores enteros aleatorios cuya suma es x

Crear un vector aleatorio cuya suma es X (por ejemplo, X = 1000) es bastante sencillo:

import random
def RunFloat():
    Scalar = 1000
    VectorSize = 30
    RandomVector = [random.random() for i in range(VectorSize)]
    RandomVectorSum = sum(RandomVector)
    RandomVector = [Scalar*i/RandomVectorSum for i in RandomVector]
    return RandomVector
RunFloat()

El código anterior crea un vector cuyos valores son flotantes y la suma es 1000.

Tengo dificultades para crear una función simple para crear un vector cuyos valores sean enteros y la suma sea X (por ejemplo, X = 1000 * 30)

import random
def RunInt():
    LowerBound = 600
    UpperBound = 1200
    VectorSize = 30
    RandomVector = [random.randint(LowerBound,UpperBound) for i in range(VectorSize)]
    RandomVectorSum = 1000*30
    #Sanity check that our RandomVectorSum is sensible/feasible
    if LowerBound*VectorSize <= RandomVectorSum and RandomVectorSum <= UpperBound*VectorSum:
        if sum(RandomVector) == RandomVectorSum:
            return RandomVector
        else:
            RunInt()  

¿Alguien tiene alguna sugerencia para mejorar esta idea? Mi código nunca podría terminar o tener problemas de profundidad de recursión.

Editar (9 de julio de 2012)

Gracias a Oliver, mgilson y Dougal por sus aportaciones. Mi solución se muestra a continuación.

Oliver fue muy creativo con la idea de la distribución multinomial.En pocas palabras, (1) es muy probable que produzca ciertas soluciones más que otras. Dougal demostró que la distribución del espacio de la solución multinomial no es uniforme o normal mediante un simple ejemplo de prueba / contador de la Ley de Números Grandes. Dougal también sugirió usar la función multinomial de numpy que me ahorra muchos problemas, dolores y dolores de cabeza.Para superar el problema de salida de (2), uso RunFloat () para dar lo que parece (no lo he probado, por lo que es solo una apariencia superficial) para una distribución más uniforme. ¿Qué diferencia hace esto en comparación con (1)? Realmente no lo sé de la mano. Aunque es lo suficientemente bueno para mi uso.Gracias de nuevo a mgilson por el método alternativo que no usa numpy.

Aquí está el código que he hecho para esta edición:

Edición # 2 (11 de julio de 2012)

Me di cuenta de que la distribución normal no se implementa correctamente, desde entonces la he modificado a lo siguiente:

import random
def RandFloats(Size):
    Scalar = 1.0
    VectorSize = Size
    RandomVector = [random.random() for i in range(VectorSize)]
    RandomVectorSum = sum(RandomVector)
    RandomVector = [Scalar*i/RandomVectorSum for i in RandomVector]
    return RandomVector

from numpy.random import multinomial
import math
def RandIntVec(ListSize, ListSumValue, Distribution='Normal'):
    """
    Inputs:
    ListSize = the size of the list to return
    ListSumValue = The sum of list values
    Distribution = can be 'uniform' for uniform distribution, 'normal' for a normal distribution ~ N(0,1) with +/- 5 sigma  (default), or a list of size 'ListSize' or 'ListSize - 1' for an empirical (arbitrary) distribution. Probabilities of each of the p different outcomes. These should sum to 1 (however, the last element is always assumed to account for the remaining probability, as long as sum(pvals[:-1]) <= 1).  
    Output:
    A list of random integers of length 'ListSize' whose sum is 'ListSumValue'.
    """
    if type(Distribution) == list:
        DistributionSize = len(Distribution)
        if ListSize == DistributionSize or (ListSize-1) == DistributionSize:
            Values = multinomial(ListSumValue,Distribution,size=1)
            OutputValue = Values[0]
    elif Distribution.lower() == 'uniform': #I do not recommend this!!!! I see that it is not as random (at least on my computer) as I had hoped
        UniformDistro = [1/ListSize for i in range(ListSize)]
        Values = multinomial(ListSumValue,UniformDistro,size=1)
        OutputValue = Values[0]
    elif Distribution.lower() == 'normal':
        """
        Normal Distribution Construction....It's very flexible and hideous
        Assume a +-3 sigma range.  Warning, this may or may not be a suitable range for your implementation!
        If one wishes to explore a different range, then changes the LowSigma and HighSigma values
        """
        LowSigma    = -3#-3 sigma
        HighSigma   = 3#+3 sigma
        StepSize    = 1/(float(ListSize) - 1)
        ZValues     = [(LowSigma * (1-i*StepSize) +(i*StepSize)*HighSigma) for i in range(int(ListSize))]
        #Construction parameters for N(Mean,Variance) - Default is N(0,1)
        Mean        = 0
        Var         = 1
        #NormalDistro= [self.NormalDistributionFunction(Mean, Var, x) for x in ZValues]
        NormalDistro= list()
        for i in range(len(ZValues)):
            if i==0:
                ERFCVAL = 0.5 * math.erfc(-ZValues[i]/math.sqrt(2))
                NormalDistro.append(ERFCVAL)
            elif i ==  len(ZValues) - 1:
                ERFCVAL = NormalDistro[0]
                NormalDistro.append(ERFCVAL)
            else:
                ERFCVAL1 = 0.5 * math.erfc(-ZValues[i]/math.sqrt(2))
                ERFCVAL2 = 0.5 * math.erfc(-ZValues[i-1]/math.sqrt(2))
                ERFCVAL = ERFCVAL1 - ERFCVAL2
                NormalDistro.append(ERFCVAL)  
            #print "Normal Distribution sum = %f"%sum(NormalDistro)
            Values = multinomial(ListSumValue,NormalDistro,size=1)
            OutputValue = Values[0]
        else:
            raise ValueError ('Cannot create desired vector')
        return OutputValue
    else:
        raise ValueError ('Cannot create desired vector')
    return OutputValue
#Some Examples        
ListSize = 4
ListSumValue = 12
for i in range(100):
    print RandIntVec(ListSize, ListSumValue,Distribution=RandFloats(ListSize))

El código de arriba se puede encontrar engithub. Es parte de una clase que construí para la escuela. user1149913, también publicó una buena explicación del problema.

Respuestas a la pregunta(7)

Su respuesta a la pregunta