Quadrat mit opencv2.4 erkennen

Ich habe ein Programm verwendet, um ein Quadrat in einem Bild zu erkennen. Das funktioniert gut mit dem Bild, das ich aus dem Internet herunterlade. Was ich aber tun soll, ist, Quadrate des Bildes zu erkennen, das von einer Kamera aufgenommen wurde. Zuerst extrahiere ich Bilder aus Video und versuche dann, Quadrate aus diesen Bildern zu erkennen, aber der Code funktioniert nicht für diese extrahierten Bilder (aber das funktioniert gut mit anderen Bildern). Was soll ich tun, um diese Aufgabe abzuschließen?

#ifdef _CH_
#pragma package <opencv>
#endif

#define CV_NO_BACKWARD_COMPATIBILITY

#include <opencv2/opencv.hpp> 
#include "stdafx.h"
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <math.h>
#include <string.h>

int thresh = 50;
IplImage* img = 0;
IplImage* img0 = 0;
CvMemStorage* storage = 0;
//const char* wndname = "Square Detection Demo";

// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )
{
    double dx1 = pt1->x - pt0->x;
    double dy1 = pt1->y - pt0->y;
    double dx2 = pt2->x - pt0->x;
    double dy2 = pt2->y - pt0->y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )
{
    CvSeq* contours;
    int i, c, l, N = 11;
    CvSize sz = cvSize( img->width & -2, img->height & -2 );
    IplImage* timg = cvCloneImage( img ); // make a copy of input image
    IplImage* gray = cvCreateImage( sz, 8, 1 );
    IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
    IplImage* tgray;
    CvSeq* result;
    double s, t;
    // create empty sequence that will contain points -
    // 4 points per square (the square's vertices)
    CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );

    // select the maximum ROI in the image
    // with the width and height divisible by 2
    cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));

    // down-scale and upscale the image to filter out the noise
    cvPyrDown( timg, pyr, 7 );
    cvPyrUp( pyr, timg, 7 );
    tgray = cvCreateImage( sz, 8, 1 );

    // find squares in every color plane of the image
    for( c = 0; c < 3; c++ )
    {
        // extract the c-th color plane
        cvSetImageCOI( timg, c+1 );
        cvCopy( timg, tgray, 0 );

        // try several threshold levels
        for( l = 0; l < N; l++ )
        {
            // hack: use Canny instead of zero threshold level.
            // Canny helps to catch squares with gradient shading
            if( l == 0 )
            {
                // apply Canny. Take the upper threshold from slider
                // and set the lower to 0 (which forces edges merging)
                cvCanny( tgray, gray, 0, thresh, 5 );
                // dilate canny output to remove potential
                // holes between edge segments
                cvDilate( gray, gray, 0, 1 );
            }
            else
            {
                // apply threshold if l!=0:
                //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
                cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
            }

            // find contours and store them all as a list
            cvFindContours( gray, storage, &contours, sizeof(CvContour),
                CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );

            // test each contour
            while( contours )
            {
                // approximate contour with accuracy proportional
                // to the contour perimeter
                result = cvApproxPoly( contours, sizeof(CvContour), storage,
                    CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
                // square contours should have 4 vertices after approximation
                // relatively large area (to filter out noisy contours)
                // and be convex.
                // Note: absolute value of an area is used because
                // area may be positive or negative - in accordance with the
                // contour orientation
                if( result->total == 4 &&
                    cvContourArea(result,CV_WHOLE_SEQ,0) > 1000 &&
                    cvCheckContourConvexity(result) )
                {
                    s = 0;

                    for( i = 0; i < 5; i++ )
                    {
                        // find minimum angle between joint
                        // edges (maximum of cosine)
                        if( i >= 2 )
                        {
                            t = fabs(angle(
                            (CvPoint*)cvGetSeqElem( result, i ),
                            (CvPoint*)cvGetSeqElem( result, i-2 ),
                            (CvPoint*)cvGetSeqElem( result, i-1 )));
                            s = s > t ? s : t;
                        }
                    }

                    // if cosines of all angles are small
                    // (all angles are ~90 degree) then write quandrange
                    // vertices to resultant sequence
                    if( s < 0.3 )
                        for( i = 0; i < 4; i++ )
                            cvSeqPush( squares,
                                (CvPoint*)cvGetSeqElem( result, i ));
                }

                // take the next contour
                contours = contours->h_next;
            }
        }
    }

    // release all the temporary images
    cvReleaseImage( &gray );
    cvReleaseImage( &pyr );
    cvReleaseImage( &tgray );
    cvReleaseImage( &timg );

    return squares;
}


// the function draws all the squares in the image
void drawSquares( IplImage* img, CvSeq* squares )
{
    CvSeqReader reader;
    IplImage* cpy = cvCloneImage( img );
    int i;

    // initialize reader of the sequence
    cvStartReadSeq( squares, &reader, 0 );

    // read 4 sequence elements at a time (all vertices of a square)
    for( i = 0; i < squares->total; i += 4 )
    {
        CvPoint pt[4], *rect = pt;
        int count = 4;

        // read 4 vertices
        CV_READ_SEQ_ELEM( pt[0], reader );
        CV_READ_SEQ_ELEM( pt[1], reader );
        CV_READ_SEQ_ELEM( pt[2], reader );
        CV_READ_SEQ_ELEM( pt[3], reader );

        // draw the square as a closed polyline
        cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
    }

    // show the resultant image
    cvShowImage( "Square Detection Demo", cpy );
    cvReleaseImage( &cpy );
}


//char* names[] = { "pic1.png", "pic2.png", "pic3.png",
                 // "pic4.png", "pic5.png", "pic6.png", 0 };

int main(int argc, char** argv)
{
    int i, c;
    // create memory storage that will contain all the dynamic data
    storage = cvCreateMemStorage(0);

    //for( i = 0; names[i] != 0; i++ )
    //{
    //    // load i-th image
    //    img0 = cvLoadImage( names[i], 1 );
    //    if( !img0 )
    //    {
    //        printf("Couldn't load %s\n", names[i] );
    //        continue;
    //    }
        img0 = cvLoadImage("frame_21.jpg");
        img = cvCloneImage( img0 );

        // create window and a trackbar (slider) with parent "image" and set callback
        // (the slider regulates upper threshold, passed to Canny edge detector)
       // cvNamedWindow( "qq");

        // find and draw the squares
        drawSquares( img, findSquares4( img, storage ) );

        // wait for key.
        // Also the function cvWaitKey takes care of event processing
        c = cvWaitKey(0);
        // release both images
        cvReleaseImage( &img );
        cvReleaseImage( &img0 );
        // clear memory storage - reset free space position
        cvClearMemStorage( storage );
        /*if( (char)c == 27 )
            break;*/
  /*  }*/

//    cvDestroyWindow( "qq" );

    return 0;
}

Dies ist das Beispielbild, das aus dem Video extrahiert wurde ----->

Antworten auf die Frage(1)

Ihre Antwort auf die Frage