Сроки на миллион строк данных -

аюсь создать 2-мерный массив (который состоит из шести столбцов и множества строк) с произвольным случайным выбором с уникальными значениями от 1 до 50 для каждой строки, а не для всего массива

np.sort(np.random.choice(np.arange(1,50),size=(100,6),replace=False))

Но это вызывает ошибку.

ValueError: Cannot take a larger sample than population when 'replace=False'

Можно ли сделать это с одним вкладышем без петли

редактировать

Окей, я получил ответ.

Это результаты с Юпитер% времени клеточной

#@James' solution
np.stack([np.random.choice(np.arange(1,50),size=6,replace=False) for i in range(1_000_000)])
Wall time: 25.1 s



#@Divakar's solution
np.random.rand(1_000_000, 50).argpartition(6,axis=1)[:,:6]+1
Wall time: 1.36 s



#@CoryKramer's solution
np.array([np.random.choice(np.arange(1, 50), size=6, replace=False) for _ in range(1_000_000)])
Wall time: 25.5 s

Я изменил типыnp.empty и np.random.randint на решение @Paul Panzer, потому что оно не работает на моем компьютере.

3.6.0 |Anaconda custom (64-bit)| (default, Dec 23 2016, 11:57:41) [MSC v.1900 64 bit (AMD64)]

Самый быстрый

def pp(n):
    draw = np.empty((n, 6), dtype=np.int64)
    # generating random numbers is expensive, so draw a large one and
    # make six out of one
    draw[:, 0] = np.random.randint(0, 50*49*48*47*46*45, (n,),dtype=np.uint64)
    draw[:, 1:] = np.arange(50, 45, -1)
    draw = np.floor_divide.accumulate(draw, axis=-1)
    draw[:, :-1] -= draw[:, 1:] * np.arange(50, 45, -1)
    # map the shorter ranges (:49, :48, :47) to the non-occupied
    # positions; this amounts to incrementing for each number on the
    # left that is not larger. the nasty bit: if due to incrementing
    # new numbers on the left are "overtaken" then for them we also
    # need to increment.
    for i in range(1, 6):
        coll = np.sum(draw[:, :i] <= draw[:, i, None], axis=-1)
        collidx = np.flatnonzero(coll)
        if collidx.size == 0:
            continue
        coll = coll[collidx]
        tot = coll
        while True:
            draw[collidx, i] += coll
            coll = np.sum(draw[collidx, :i] <= draw[collidx, i, None],  axis=-1)
            relidx = np.flatnonzero(coll > tot)
            if relidx.size == 0:
                break
            coll, tot = coll[relidx]-tot[relidx], coll[relidx]
            collidx = collidx[relidx]

    return draw + 1

#@Paul Panzer' solution
pp(1_000_000)
Wall time: 557 ms

Спасибо вам всем.

Ответы на вопрос(4)

Это не чистоnumpy но вы могли бы обернуть свое решение в понимание списка

>>> rows = 10
>>> cols = 6
>>> np.array([np.random.choice(np.arange(1, 50), size=cols, replace=False) for _ in range(rows)])
array([[ 9, 10, 21, 33, 34, 15],
       [48, 46, 36,  7, 37, 45],
       [21, 15,  5,  9, 31, 26],
       [48, 24, 30, 18, 47, 23],
       [22, 31, 19, 32,  3, 33],
       [35, 44, 15, 46, 20, 43],
       [11, 37, 44,  6, 16, 35],
       [42, 49, 41, 28, 12, 19],
       [19,  6, 32,  3,  1, 22],
       [29, 33, 42,  5, 30, 43]])

а затем сложить их.

np.stack([np.random.choice(np.arange(1,50),size=6,replace=False) for i in range(100)])
 NOhs06 дек. 2017 г., 14:14
Я бы предпочел использованиеnp.stack по следующей причине: (Изvstack документы)This function continues to be supported for backward compatibility, but you should prefer np.concatenate or np.stack. The np.stack function was added in NumPy 1.10.
 James06 дек. 2017 г., 14:16
Ах. Я не знал этого.

Вот векторизованный подход сrand+argsort/argpartition трюк отhere -

np.random.rand(rows, 50).argpartition(6,axis=1)[:,:6]+1

Пробный прогон -

In [41]: rows = 10

In [42]: np.random.rand(rows, 50).argpartition(6,axis=1)[:,:6]+1
Out[42]: 
array([[ 1,  9,  3, 26, 14, 44],
       [32, 20, 27, 13, 25, 45],
       [40, 12, 47, 16, 10, 29],
       [ 6, 36, 32, 16, 18,  4],
       [42, 46, 24,  9,  1, 31],
       [15, 25, 47, 42, 34, 24],
       [ 7, 16, 49, 31, 40, 20],
       [28, 17, 47, 36,  8, 44],
       [ 7, 42, 14,  4, 17, 35],
       [39, 19, 37,  7,  8, 36]])

Просто чтобы доказать случайность -

In [56]: rows = 1000000

In [57]: out = np.random.rand(rows, 50).argpartition(6,axis=1)[:,:6]+1

In [58]: np.bincount(out.ravel())[1:]
Out[58]: 
array([120048, 120026, 119942, 119838, 119885, 119669, 119965, 119491,
       120280, 120108, 120293, 119399, 119917, 119974, 120195, 119796,
       119887, 119505, 120235, 119857, 119499, 120560, 119891, 119693,
       120081, 120369, 120011, 119714, 120218, 120581, 120111, 119867,
       119791, 120265, 120457, 120048, 119813, 119702, 120266, 120445,
       120016, 120190, 119576, 119737, 120153, 120215, 120144, 120196,
       120218, 119863])

Сроки на миллион строк данных -

In [43]: rows = 1000000

In [44]: %timeit np.random.rand(rows, 50).argpartition(6,axis=1)[:,:6]+1
1 loop, best of 3: 1.07 s per loop
Решение Вопроса

сначала рисуйте (50 вариантов), затем второй (49 вариантов) и т. Д. Для больших наборов это вполне конкурентоспособно (стр. В таблице):

# n = 10
# pp                    0.18564210 ms
# Divakar               0.01960790 ms
# James                 0.20074140 ms
# CK                    0.17823420 ms
# n = 1000
# pp                    0.80046050 ms
# Divakar               1.31817130 ms
# James                18.93511460 ms
# CK                   20.83670820 ms
# n = 1000000
# pp                  655.32905590 ms
# Divakar            1352.44713990 ms
# James             18471.08987370 ms
# CK                18369.79808050 ms
# pp     checking plausibility...
#     var (exp obs) 208.333333333 208.363840259
#     mean (exp obs) 25.5 25.5064865
# Divakar     checking plausibility...
#     var (exp obs) 208.333333333 208.21113972
#     mean (exp obs) 25.5 25.499471
# James     checking plausibility...
#     var (exp obs) 208.333333333 208.313436938
#     mean (exp obs) 25.5 25.4979035
# CK     checking plausibility...
#     var (exp obs) 208.333333333 208.169585249
#     mean (exp obs) 25.5 25.49

Код, включая бенчмаркинг. Алго немного сложнее, потому что отображение свободных мест волосатое:

import numpy as np
import types
from timeit import timeit

def f_pp(n):
    draw = np.empty((n, 6), dtype=int)
    # generating random numbers is expensive, so draw a large one and
    # make six out of one
    draw[:, 0] = np.random.randint(0, 50*49*48*47*46*45, (n,))
    draw[:, 1:] = np.arange(50, 45, -1)
    draw = np.floor_divide.accumulate(draw, axis=-1)
    draw[:, :-1] -= draw[:, 1:] * np.arange(50, 45, -1)
    # map the shorter ranges (:49, :48, :47) to the non-occupied
    # positions; this amounts to incrementing for each number on the
    # left that is not larger. the nasty bit: if due to incrementing
    # new numbers on the left are "overtaken" then for them we also
    # need to increment.
    for i in range(1, 6):
        coll = np.sum(draw[:, :i] <= draw[:, i, None], axis=-1)
        collidx = np.flatnonzero(coll)
        if collidx.size == 0:
            continue
        coll = coll[collidx]
        tot = coll
        while True:
            draw[collidx, i] += coll
            coll = np.sum(draw[collidx, :i] <= draw[collidx, i, None], axis=-1)
            relidx = np.flatnonzero(coll > tot)
            if relidx.size == 0:
                break
            coll, tot = coll[relidx]-tot[relidx], coll[relidx]
            collidx = collidx[relidx]

    return draw + 1

def check_result(draw, name):
    print(name[2:], '    checking plausibility...')
    import scipy.stats
    assert all(len(set(row)) == 6 for row in draw)
    assert len(set(draw.ravel())) == 50
    print('    var (exp obs)', scipy.stats.uniform(0.5, 50).var(), draw.var())
    print('    mean (exp obs)', scipy.stats.uniform(0.5, 50).mean(), draw.mean())

def f_Divakar(n):
    return np.random.rand(n, 50).argpartition(6,axis=1)[:,:6]+1

def f_James(n):
    return np.stack([np.random.choice(np.arange(1,51),size=6,replace=False) for i in range(n)])

def f_CK(n):
    return np.array([np.random.choice(np.arange(1, 51), size=6, replace=False) for _ in range(n)])

for n in (10, 1_000, 1_000_000):
    print(f'n = {n}')
    for name, func in list(globals().items()):
        if not name.startswith('f_') or not isinstance(func, types.FunctionType):
            continue
        try:
            print("{:16s}{:16.8f} ms".format(name[2:], timeit(
                'f(n)', globals={'f':func, 'n':n}, number=10)*100))
        except:
            print("{:16s} apparently failed".format(name[2:]))
    if(n >= 10000):
        for name, func in list(globals().items()):
            if name.startswith('f_') and isinstance(func, types.FunctionType):

                check_result(func(n), name)

Ваш ответ на вопрос