Умножение искровой матрицы на питон
Я пытаюсь сделать матричное умножение, используя Apache Spark и Python.
Вот мои данные
from pyspark.mllib.linalg.distributed import RowMatrix
Мой рдд векторов
rows_1 = sc.parallelize([[1, 2], [4, 5], [7, 8]])
rows_2 = sc.parallelize([[1, 2], [4, 5]])
Моя макрикс
mat1 = RowMatrix(rows_1)
mat2 = RowMatrix(rows_2)
Я хотел бы сделать что-то вроде этого:
mat = mat1 * mat2
Я написал функцию для обработки умножения матриц, но я боюсь иметь длительное время обработки. Вот моя функция:
def matrix_multiply(df1, df2):
nb_row = df1.count()
mat=[]
for i in range(0, nb_row):
row=list(df1.filter(df1['index']==i).take(1)[0])
row_out = []
for r in range(0, len(row)):
r_value = 0
col = df2.select(df2[list_col[r]]).collect()
col = [list(c)[0] for c in col]
for c in range(0, len(col)):
r_value += row[c] * col[c]
row_out.append(r_value)
mat.append(row_out)
return mat
Моя функция совершать много искровых действий (брать, собирать и т. Д.). Функция займет много времени обработки? Если у кого-то есть другая идея, это будет полезно для меня.