Reconstrução 3d de 2 imagens sem informações sobre a câmera
Sou novo nesse campo e estou tentando modelar uma cena simples em 3D a partir de imagens 2D e não tenho informações sobre câmeras. Eu sei que existem 3 opções:
Tenho duas imagens e conheço o modelo da minha câmera (intrisics) que carreguei de um XML, por exemploloadXMLFromFile()
=>stereoRectify()
=>reprojectImageTo3D()
Não os tenho, mas posso calibrar minha câmera =>stereoCalibrate()
=>stereoRectify()
=>reprojectImageTo3D()
Não consigo calibrar a câmera (é o meu caso, porque não tenho a câmera que tirou as 2 imagens, preciso encontrar pontos-chave de par nas duas imagens com SURF, SIFT, por exemplo (eu posso usar qualquer detector de blob na verdade), calcule os descritores desses pontos-chave e, em seguida, combine os pontos-chave da imagem à direita e da imagem à esquerda de acordo com seus descritores e encontre a matriz fundamental deles.O processamento é muito mais difícil e seria assim:
detectar pontos-chave (SURF, SIFT) =>extract descritores (SURF, SIFT) =>compare e descritores de correspondência (abordagens baseadas em BruteForce, Flann) =>find mat fundamentalfindFundamentalMat()
) desses pares =>stereoRectifyUncalibrated()
=>reprojectImageTo3D()
Estou usando a última abordagem e minhas perguntas são:
1) Está certo?
2) se estiver tudo bem, tenho uma dúvida sobre o último passostereoRectifyUncalibrated()
=>reprojectImageTo3D()
. A assinatura dereprojectImageTo3D()
função @ é:
void reprojectImageTo3D(InputArray disparity, OutputArray _3dImage, InputArray Q, bool handleMissingValues=false, int depth=-1 )
cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true) (in my code)
Parameters:
disparity
- Entrada de imagem de disparidade de um canal, não assinada, 8 bits, 16 bits, 32 bits ou ponto flutuante de 32 bit_3dImage
- Saída de imagem de ponto flutuante de 3 canais do mesmo tamanho quedisparity
. Cada elemento de_3dImage(x,y)
contém coordenadas 3D do ponto(x,y)
calculado a partir do mapa de disparidadeQ
- matriz de transformação de perspectiva 4x4 que pode ser obtida comstereoRectify()
.handleMissingValues
- indica se a função deve lidar com valores ausentes (ou seja, pontos em que a disparidade não foi computada). E sehandleMissingValues=true
, em seguida, pixels com a disparidade mínima que corresponde aos valores discrepantes (consulteStereoBM::operator()
) são transformados em pontos 3D com um valor Z muito grande (atualmente definido como 10000ddepth
- A profundidade da matriz de saída opcional. Se for -1, a imagem de saída teráCV_32F
profundidade.ddepth
também pode ser definido comoCV_16S
, CV_32S
ou `CV_32F '.Como posso obter oQ
matriz? É possível obter oQ
matriz comF
, H1
eH2
ou de outra maneira?
3) Existe outra maneira de obter as coordenadas xyz sem calibrar as câmera
Meu código é:
#include <opencv2/core/core.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/contrib/contrib.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <stdio.h>
#include <iostream>
#include <vector>
#include <conio.h>
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <opencv/cvaux.h>
using namespace cv;
using namespace std;
int main(int argc, char *argv[]){
// Read the images
Mat imgLeft = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat imgRight = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
// check
if (!imgLeft.data || !imgRight.data)
return 0;
// 1] find pair keypoints on both images (SURF, SIFT):::::::::::::::::::::::::::::
// vector of keypoints
std::vector<cv::KeyPoint> keypointsLeft;
std::vector<cv::KeyPoint> keypointsRight;
// Construct the SURF feature detector object
cv::SiftFeatureDetector sift(
0.01, // feature threshold
10); // threshold to reduce
// sensitivity to lines
// Detect the SURF features
// Detection of the SIFT features
sift.detect(imgLeft,keypointsLeft);
sift.detect(imgRight,keypointsRight);
std::cout << "Number of SURF points (1): " << keypointsLeft.size() << std::endl;
std::cout << "Number of SURF points (2): " << keypointsRight.size() << std::endl;
// 2] compute descriptors of these keypoints (SURF,SIFT) ::::::::::::::::::::::::::
// Construction of the SURF descriptor extractor
cv::SurfDescriptorExtractor surfDesc;
// Extraction of the SURF descriptors
cv::Mat descriptorsLeft, descriptorsRight;
surfDesc.compute(imgLeft,keypointsLeft,descriptorsLeft);
surfDesc.compute(imgRight,keypointsRight,descriptorsRight);
std::cout << "descriptor matrix size: " << descriptorsLeft.rows << " by " << descriptorsLeft.cols << std::endl;
// 3] matching keypoints from image right and image left according to their descriptors (BruteForce, Flann based approaches)
// Construction of the matcher
cv::BruteForceMatcher<cv::L2<float> > matcher;
// Match the two image descriptors
std::vector<cv::DMatch> matches;
matcher.match(descriptorsLeft,descriptorsRight, matches);
std::cout << "Number of matched points: " << matches.size() << std::endl;
// 4] find the fundamental mat ::::::::::::::::::::::::::::::::::::::::::::::::::::
// Convert 1 vector of keypoints into
// 2 vectors of Point2f for compute F matrix
// with cv::findFundamentalMat() function
std::vector<int> pointIndexesLeft;
std::vector<int> pointIndexesRight;
for (std::vector<cv::DMatch>::const_iterator it= matches.begin(); it!= matches.end(); ++it) {
// Get the indexes of the selected matched keypoints
pointIndexesLeft.push_back(it->queryIdx);
pointIndexesRight.push_back(it->trainIdx);
}
// Convert keypoints into Point2f
std::vector<cv::Point2f> selPointsLeft, selPointsRight;
cv::KeyPoint::convert(keypointsLeft,selPointsLeft,pointIndexesLeft);
cv::KeyPoint::convert(keypointsRight,selPointsRight,pointIndexesRight);
/* check by drawing the points
std::vector<cv::Point2f>::const_iterator it= selPointsLeft.begin();
while (it!=selPointsLeft.end()) {
// draw a circle at each corner location
cv::circle(imgLeft,*it,3,cv::Scalar(255,255,255),2);
++it;
}
it= selPointsRight.begin();
while (it!=selPointsRight.end()) {
// draw a circle at each corner location
cv::circle(imgRight,*it,3,cv::Scalar(255,255,255),2);
++it;
} */
// Compute F matrix from n>=8 matches
cv::Mat fundemental= cv::findFundamentalMat(
cv::Mat(selPointsLeft), // points in first image
cv::Mat(selPointsRight), // points in second image
CV_FM_RANSAC); // 8-point method
std::cout << "F-Matrix size= " << fundemental.rows << "," << fundemental.cols << std::endl;
/* draw the left points corresponding epipolar lines in right image
std::vector<cv::Vec3f> linesLeft;
cv::computeCorrespondEpilines(
cv::Mat(selPointsLeft), // image points
1, // in image 1 (can also be 2)
fundemental, // F matrix
linesLeft); // vector of epipolar lines
// for all epipolar lines
for (vector<cv::Vec3f>::const_iterator it= linesLeft.begin(); it!=linesLeft.end(); ++it) {
// draw the epipolar line between first and last column
cv::line(imgRight,cv::Point(0,-(*it)[2]/(*it)[1]),cv::Point(imgRight.cols,-((*it)[2]+(*it)[0]*imgRight.cols)/(*it)[1]),cv::Scalar(255,255,255));
}
// draw the left points corresponding epipolar lines in left image
std::vector<cv::Vec3f> linesRight;
cv::computeCorrespondEpilines(cv::Mat(selPointsRight),2,fundemental,linesRight);
for (vector<cv::Vec3f>::const_iterator it= linesRight.begin(); it!=linesRight.end(); ++it) {
// draw the epipolar line between first and last column
cv::line(imgLeft,cv::Point(0,-(*it)[2]/(*it)[1]), cv::Point(imgLeft.cols,-((*it)[2]+(*it)[0]*imgLeft.cols)/(*it)[1]), cv::Scalar(255,255,255));
}
// Display the images with points and epipolar lines
cv::namedWindow("Right Image Epilines");
cv::imshow("Right Image Epilines",imgRight);
cv::namedWindow("Left Image Epilines");
cv::imshow("Left Image Epilines",imgLeft);
*/
// 5] stereoRectifyUncalibrated()::::::::::::::::::::::::::::::::::::::::::::::::::
//H1, H2 – The output rectification homography matrices for the first and for the second images.
cv::Mat H1(4,4, imgRight.type());
cv::Mat H2(4,4, imgRight.type());
cv::stereoRectifyUncalibrated(selPointsRight, selPointsLeft, fundemental, imgRight.size(), H1, H2);
// create the image in which we will save our disparities
Mat imgDisparity16S = Mat( imgLeft.rows, imgLeft.cols, CV_16S );
Mat imgDisparity8U = Mat( imgLeft.rows, imgLeft.cols, CV_8UC1 );
// Call the constructor for StereoBM
int ndisparities = 16*5; // < Range of disparity >
int SADWindowSize = 5; // < Size of the block window > Must be odd. Is the
// size of averaging window used to match pixel
// blocks(larger values mean better robustness to
// noise, but yield blurry disparity maps)
StereoBM sbm( StereoBM::BASIC_PRESET,
ndisparities,
SADWindowSize );
// Calculate the disparity image
sbm( imgLeft, imgRight, imgDisparity16S, CV_16S );
// Check its extreme values
double minVal; double maxVal;
minMaxLoc( imgDisparity16S, &minVal, &maxVal );
printf("Min disp: %f Max value: %f \n", minVal, maxVal);
// Display it as a CV_8UC1 image
imgDisparity16S.convertTo( imgDisparity8U, CV_8UC1, 255/(maxVal - minVal));
namedWindow( "windowDisparity", CV_WINDOW_NORMAL );
imshow( "windowDisparity", imgDisparity8U );
// 6] reprojectImageTo3D() :::::::::::::::::::::::::::::::::::::::::::::::::::::
//Mat xyz;
//cv::reprojectImageTo3D(imgDisparity8U, xyz, Q, true);
//How can I get the Q matrix? Is possibile to obtain the Q matrix with
//F, H1 and H2 or in another way?
//Is there another way for obtain the xyz coordinates?
cv::waitKey();
return 0;
}