Produzindo espectrograma a partir do microfone

Abaixo, tenho um código que receberá a entrada de um microfone e, se a média do bloco de áudio ultrapassar um determinado limite, produzirá um espectrograma do bloco de áudio (com 30 ms de comprimento). Aqui está a aparência de um espectrograma gerado no meio da conversa normal:

Pelo que vi, isso não parece nada com o que eu esperaria que um espectrograma fosse, dado o áudio e o ambiente. Eu estava esperando algo mais como o seguinte (transposto para preservar espaço):

O microfone com o qual estou gravando é o padrão no meu Macbook, alguma sugestão sobre o que está acontecendo de errado?

record.py:

import pyaudio
import struct
import math
import numpy as np
from scipy import signal
import matplotlib.pyplot as plt


THRESHOLD = 40 # dB
RATE = 44100
INPUT_BLOCK_TIME = 0.03 # 30 ms
INPUT_FRAMES_PER_BLOCK = int(RATE * INPUT_BLOCK_TIME)

def get_rms(block):
    return np.sqrt(np.mean(np.square(block)))

class AudioHandler(object):
    def __init__(self):
        self.pa = pyaudio.PyAudio()
        self.stream = self.open_mic_stream()
        self.threshold = THRESHOLD
        self.plot_counter = 0

    def stop(self):
        self.stream.close()

    def find_input_device(self):
        device_index = None
        for i in range( self.pa.get_device_count() ):
            devinfo = self.pa.get_device_info_by_index(i)
            print('Device %{}: %{}'.format(i, devinfo['name']))

            for keyword in ['mic','input']:
                if keyword in devinfo['name'].lower():
                    print('Found an input: device {} - {}'.format(i, devinfo['name']))
                    device_index = i
                    return device_index

        if device_index == None:
            print('No preferred input found; using default input device.')

        return device_index

    def open_mic_stream( self ):
        device_index = self.find_input_device()

        stream = self.pa.open(  format = pyaudio.paInt16,
                                channels = 1,
                                rate = RATE,
                                input = True,
                                input_device_index = device_index,
                                frames_per_buffer = INPUT_FRAMES_PER_BLOCK)

        return stream

    def processBlock(self, snd_block):
        f, t, Sxx = signal.spectrogram(snd_block, RATE)
        plt.pcolormesh(t, f, Sxx)
        plt.ylabel('Frequency [Hz]')
        plt.xlabel('Time [sec]')
        plt.savefig('data/spec{}.png'.format(self.plot_counter), bbox_inches='tight')
        self.plot_counter += 1

    def listen(self):
        try:
            raw_block = self.stream.read(INPUT_FRAMES_PER_BLOCK, exception_on_overflow = False)
            count = len(raw_block) / 2
            format = '%dh' % (count)
            snd_block = np.array(struct.unpack(format, raw_block))
        except Exception as e:
            print('Error recording: {}'.format(e))
            return

        amplitude = get_rms(snd_block)
        if amplitude > self.threshold:
            self.processBlock(snd_block)
        else:
            pass

if __name__ == '__main__':
    audio = AudioHandler()
    for i in range(0,100):
        audio.listen()

Edições baseadas em comentários:

Se restringirmos a taxa a 16000 Hz e usarmos uma escala logarítmica para o mapa de cores, esta é uma saída para tocar perto do microfone:

O que ainda me parece um pouco estranho, mas também parece um passo na direção certa.

Usando Sox e comparando com um espectrograma gerado a partir do meu programa:

questionAnswers(4)

yourAnswerToTheQuestion