Como analisar de forma incremental (e atuar) um arquivo grande com o Boost.Spirit.Qi?
Eu criei um analisador de Qi para um formato de arquivo de texto personalizado. Existem dezenas de milhares de entradas para processar e cada entrada geralmente tem entre 1 a 10 subentradas. Eu coloquei um exemplo de trabalho aparado do meu analisadoraqui.
#include <boost/config/warning_disable.hpp>
#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix_core.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/spirit/include/phoenix_fusion.hpp>
#include <boost/spirit/include/phoenix_stl.hpp>
#include <boost/spirit/include/phoenix_object.hpp>
#include <boost/spirit/include/support_istream_iterator.hpp>
#include <boost/fusion/include/adapt_struct.hpp>
#include <boost/fusion/include/io.hpp>
#include <fstream>
#include <iostream>
#include <string>
using std::string;
using std::vector;
using std::cout;
using std::endl;
namespace model
{
namespace qi = boost::spirit::qi;
struct spectrum
{
string comment;
string file;
string nativeId;
double precursorMz;
int precursorCharge;
double precursorIntensity;
};
struct cluster
{
string id;
vector<spectrum> spectra;
};
struct clustering
{
string name;
vector<cluster> clusters;
};
}
// Tell fusion about the data structures to make them first-class fusion citizens.
// Must be at global scope.
BOOST_FUSION_ADAPT_STRUCT(
model::spectrum,
(string, comment)
(string, file)
(string, nativeId)
(double, precursorMz)
(int, precursorCharge)
(double, precursorIntensity)
)
BOOST_FUSION_ADAPT_STRUCT(
model::cluster,
(string, id)
(std::vector<model::spectrum>, spectra)
)
BOOST_FUSION_ADAPT_STRUCT(
model::clustering,
(string, name)
(std::vector<model::cluster>, clusters)
)
namespace {
struct ReportError
{
template<typename, typename, typename, typename> struct result { typedef void type; };
// contract the string to the surrounding new-line characters
template<typename Iter>
void operator()(Iter first_iter, Iter last_iter,
Iter error_iter, const boost::spirit::qi::info& what) const
{
std::string first(first_iter, error_iter);
std::string last(error_iter, last_iter);
auto first_pos = first.rfind('\n');
auto last_pos = last.find('\n');
auto error_line = ((first_pos == std::string::npos) ? first
: std::string(first, first_pos + 1))
+ std::string(last, 0, last_pos);
//auto error_pos = (error_iter - first_iter) + 1;
/*auto error_pos = error
if (first_pos != std::string::npos)
error_pos -= (first_pos + 1);*/
std::cerr << "Error parsing in " << what << std::endl
<< error_line << std::endl
//<< std::setw(error_pos) << '^'
<< std::endl;
}
};
const boost::phoenix::function<ReportError> report_error = ReportError();
}
namespace model
{
template <typename Iterator>
struct cluster_parser : qi::grammar<Iterator, clustering(), qi::blank_type>
{
cluster_parser() : cluster_parser::base_type(clusters)
{
using qi::int_;
using qi::lit;
using qi::double_;
using qi::bool_;
using qi::lexeme;
using qi::eol;
using qi::ascii::char_;
using qi::on_error;
using qi::fail;
using namespace qi::labels;
using boost::phoenix::construct;
using boost::phoenix::val;
quoted_string %= lexeme['"' > +(char_ - '"') > '"'];
spectrum_start %=
lit("SPEC") >
"#" > +(char_ - "File:") >
"File:" > quoted_string > lit(",") >
"NativeID:" > quoted_string >
bool_ > double_ > int_ > double_;
cluster_start %=
"=Cluster=" > eol >
"id=" > +(char_ - eol) > eol >
spectrum_start % eol;
clusters %=
"name=" > +(char_ - eol) > eol >
eol >
cluster_start % eol;
BOOST_SPIRIT_DEBUG_NODES((clusters)(cluster_start)(quoted_string)(spectrum_start))
//on_error<fail>(clusters, report_error(_1, _2, _3, _4));
//on_error<fail>(cluster_start, report_error(_1, _2, _3, _4));
//on_error<fail>(spectrum_start, report_error(_1, _2, _3, _4));
//on_error<fail>(quoted_string, report_error(_1, _2, _3, _4));
// on_success(cluster_start, quantify_cluster(_1, _2, _3, _4)); ??
}
qi::rule<Iterator, std::string(), qi::blank_type> quoted_string;
qi::rule<Iterator, cluster(), qi::blank_type> cluster_start;
qi::rule<Iterator, spectrum(), qi::blank_type> spectrum_start;
qi::rule<Iterator, clustering(), qi::blank_type> clusters;
};
}
int main()
{
using namespace model;
cluster_parser<boost::spirit::istream_iterator> g; // Our grammar
string str;
//std::ifstream input("c:/test/Mo_tai.clustering");
std::istringstream input("name=GreedyClustering_0.99\n"
"\n"
"=Cluster=\n"
"id=9c8c5830-5841-4f77-b819-64180509615b\n"
"SPEC\t#file=w:\\test\\Mo_Tai_iTRAQ_f4.mgf#id=index=219#title=Mo_Tai_iTRAQ_f4.1254.1254.2 File:\"Mo_Tai_iTRAQ_f4.raw\", NativeID:\"controllerType=0 controllerNumber=1 scan=1254\"\ttrue\t\t300.1374\t2\t\t\t0.0\n"
"=Cluster=\n"
"id=f8f384a1-3d5f-4af1-9581-4d03a5aa3342\n"
"SPEC\t#file=w:\\test\\Mo_Tai_iTRAQ_f9.mgf#id=index=560#title=Mo_Tai_iTRAQ_f9.1666.1666.3 File:\"Mo_Tai_iTRAQ_f9.raw\", NativeID:\"controllerType=0 controllerNumber=1 scan=1666\"\ttrue\t\t300.14413\t3\t\t\t0.0\n"
"SPEC\t#file=w:\\test\\Mo_Tai_iTRAQ_f9.mgf#id=index=520#title=Mo_Tai_iTRAQ_f9.1621.1621.3 File:\"Mo_Tai_iTRAQ_f9.raw\", NativeID:\"controllerType=0 controllerNumber=1 scan=1621\"\ttrue\t\t300.14197\t3\t\t\t0.0\n"
"=Cluster=\n"
"id=b84b79e1-44bc-44c0-a9af-5391ca02582d\n"
"SPEC\t#file=w:\\test\\Mo_Tai_iTRAQ_f2.mgf#id=index=7171#title=Mo_Tai_iTRAQ_f2.12729.12729.2 File:\"Mo_Tai_iTRAQ_f2.raw\", NativeID:\"controllerType=0 controllerNumber=1 scan=12729\"\ttrue\t\t300.15695\t2\t\t\t0.0");
input.unsetf(std::ios::skipws);
boost::spirit::istream_iterator begin(input);
boost::spirit::istream_iterator end;
clustering clusteringResults;
bool r = phrase_parse(begin, end, g, qi::blank, clusteringResults);
if (r && begin == end)
{
cout << "Parsing succeeded (" << clusteringResults.clusters.size() << " clusters)\n";
/*for (size_t i = 0; i < std::min((size_t)10, clusteringResults.clusters.size()); ++i)
{
cluster& c = clusteringResults.clusters[i];
cout << "Cluster " << c.id << " - avg. precursor m/z: " << c.avgPrecursorMz << ", num. spectra: " << c.spectra.size() << endl;
}*/
return 1;
}
else
{
std::cout << "Parsing failed (" << clusteringResults.clusters.size() << " clusters)\n";
if (!clusteringResults.clusters.empty())
{
cluster& c = clusteringResults.clusters.back();
cout << "Last cluster parsed " << c.id << ", num. spectra: " << c.spectra.size() << endl;
}
return 1;
}
}
Não quero analisar o arquivo inteiro na memória antes de processá-lo. Como posso enfileirar uma entrada (cluster) para processamento após a conclusão de cada análise de cluster, excluir o cluster após o processamento e continuar analisando? Melhor ainda seria que outro thread processasse o processamento de forma assíncrona.