perspectiva Costura da imagem

Encontrei um exemplo muito útil na costura de imagens, mas meu problema era esse tipo de imagem aqui é um exemplo

e aqui está uma outra imagem

quando eu uso a máquina de costura opencv, o novo resultado está ficando menor como este

existe algum método para aplicar uma transformação nas imagens de entrada para que elas fiquem assim

aqui está o código

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include<opencv2/opencv.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/stitching/stitcher.hpp>
#include<vector>
using namespace cv;
using namespace std;
cv::vector<cv::Mat> ImagesList;
string result_name ="/TopViewsHorizantale/1.bmp";
int main()
{
      // Load the images

 Mat image1= imread("current_00000.bmp" );
 Mat image2= imread("current_00001.bmp" );
 cv::resize(image1, image1, image2.size());
 Mat gray_image1;
 Mat gray_image2;
 Mat Matrix = Mat(3,3,CV_32FC1);

 // Convert to Grayscale
 cvtColor( image1, gray_image1, CV_RGB2GRAY );
 cvtColor( image2, gray_image2, CV_RGB2GRAY );
 namedWindow("first image",WINDOW_AUTOSIZE);
 namedWindow("second image",WINDOW_AUTOSIZE);
 imshow("first image",image2);
 imshow("second image",image1);

if( !gray_image1.data || !gray_image2.data )
 { std::cout<< " --(!) Error reading images " << std::endl; return -1; }

//-- Step 1: Detect the keypoints using SURF Detector
 int minHessian = 400;

SurfFeatureDetector detector( minHessian );

std::vector< KeyPoint > keypoints_object, keypoints_scene;

detector.detect( gray_image1, keypoints_object );
detector.detect( gray_image2, keypoints_scene );

//-- Step 2: Calculate descriptors (feature vectors)
 SurfDescriptorExtractor extractor;

Mat descriptors_object, descriptors_scene;

extractor.compute( gray_image1, keypoints_object, descriptors_object );
extractor.compute( gray_image2, keypoints_scene, descriptors_scene );

//-- Step 3: Matching descriptor vectors using FLANN matcher
 FlannBasedMatcher matcher;
 std::vector< DMatch > matches;
 matcher.match( descriptors_object, descriptors_scene, matches );

double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
 for( int i = 0; i < descriptors_object.rows; i++ )
 { double dist = matches[i].distance;
 if( dist < min_dist ) min_dist = dist;
 if( dist > max_dist ) max_dist = dist;
 }

printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );

//-- Use only "good" matches (i.e. whose distance is less than 3*min_dist )
 std::vector< DMatch > good_matches;

for( int i = 0; i < descriptors_object.rows; i++ )
 { if( matches[i].distance < 3*min_dist )
 { good_matches.push_back( matches[i]); }
 }
 std::vector< Point2f > obj;
 std::vector< Point2f > scene;

for( int i = 0; i < good_matches.size(); i++ )
 {
 //-- Get the keypoints from the good matches
 obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
 scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
 }

// Find the Homography Matrix
 Mat H = findHomography( obj, scene, CV_RANSAC );
 // Use the Homography Matrix to warp the images
 cv::Mat result;
      int N = image1.rows + image2.rows;
 int M = image1.cols+image2.cols;
 warpPerspective(image1,result,H,cv::Size(N,M));
 cv::Mat half(result,cv::Rect(0,0,image2.rows,image2.cols));
 result.copyTo(half);
 namedWindow("Result",WINDOW_AUTOSIZE);
 imshow( "Result", result);

 imwrite(result_name, result);

 waitKey(0);
 return 0;
}

Também aqui está um link para algumas imagens:https://www.dropbox.com/sh/ovzkqomxvzw8rww/AAB2DDCrCF6NlCFre7V1Gb6La?dl=0 Muito obrigado Lafi

questionAnswers(1)

yourAnswerToTheQuestion