OpenCL Kernel Fehler unter Mac OSx

Ich habe OpenCL-Code geschrieben, der unter LINUX einwandfrei funktioniert, aber unter Mac OSX schlägt er mit Fehlern fehl. Kann mir bitte jemand helfen, herauszufinden, warum diese auftreten sollten. Der Kernelcode wird nach dem Fehler angezeigt. Mein Kernel verwendet double, daher habe ich das entsprechende Pragma oben. Aber ich weiß nicht, warum der Fehler den Datentyp float anzeigt:

inline float8 __OVERLOAD__ _name(float8 x) { return _default_name(x); } \
                       ^
/System/Library/Frameworks/OpenCL.framework/Versions/A/lib/clang/3.2/include/cl_kernel.h:4606:30: note: candidate function
__CLFN_FD_1FD_FAST_RELAX(__fast_relax_log, native_log, __cl_log);
                         ^
/System/Library/Frameworks/OpenCL.framework/Versions/A/lib/clang/3.2/include/cl_kernel.h:421:29: 

note: expanded from macro '__CLFN_FD_1FD_FAST_RELAX'
inline float16 __OVERLOAD__ _name(float16 x){ return _default_name(x); }
                        ^
<program source>:206:19: error: call to '__fast_relax_log' is ambiguous
                                    det_zkinin + log((2.0) * 3.14));
              ^~~~~~~~~~~~~~~~~
/System/Library/Frameworks/OpenCL.framework/Versions/A/lib/clang/3.2/include/cl_kernel.h:4608:22: 
note: expanded from macro 'log'
#define log(__x) __fast_relax_log(__x)
                 ^~~~~~~~~~~~~~~~
/System/Library/Frameworks/OpenCL.framework/Versions/A/lib/clang/3.2/include/cl_kernel.h:4606:30: 
note: candidate function
__CLFN_FD_1FD_FAST_RELAX(__fast_relax_log, native_log, __cl_log);
                         ^
/System/Library/Frameworks/OpenCL.framework/Versions/A/lib/clang/3.2/include/cl_kernel.h:416:27: 

note: expanded from macro '__CLFN_FD_1FD_FAST_RELAX'
inline float __OVERLOAD__ _name(float x) { return _default_name(x); } \
                      ^
/System/Library/Frameworks/OpenCL.framework/Versions/A/lib/clang/3.2/include/cl_kernel.h:4606:30 
note: candidate function
__CLFN_FD_1FD_FAST_RELAX(__fast_relax_log, native_log, __cl_log);
                         ^

                       ^

Dies ist der Kernel-Code:

#pragma OPENCL EXTENSION cl_khr_fp64: enable

__kernel void ckf_kernel2(int dimx, int aligned_dimx, 
                          int numOfCKF, int aligned_ckf,
                          int iter, 
                          double epsilon,
                          __global double * yrlists, 
                          __global double * zrlists,
                          __global double * rlists,
                          __global double * init_state,
                          __global double * init_var,
                          __global double * sing_j,
                          __global double * covMatrixSum,
                          __global double * cummulative,
                          __global double * temp_var,
                          __global double * x_k_f,
                          __global double * z_k_j,
                          __global double * crossCovMatrixSum,
                          __global double * z_k_f,
                          __global double * innCovMatrixSum,
                          __global double * zk_diff,
                          __global double * reduce_gain_matrix,
                          __global double * llk
    )
{

    int ckf_id = get_global_id(0);

    if( ckf_id < numOfCKF){



        for (int i = 0 ; i < dimx ; i++)
        {
            for (int idx = 0; idx < dimx * 2 ; idx++)
            {
                int column = idx % dimx;
                int mode = (idx >= dimx) ? -1 : 1;
                sing_j[(i * dimx * 2 + idx) * aligned_ckf + ckf_id] = temp_var[(i * dimx + column) * aligned_ckf + ckf_id] * epsilon * mode + init_state[i * aligned_ckf + ckf_id];

            }
        }
        z_k_f[ckf_id] = 0;
        innCovMatrixSum[ckf_id] = 0;
        for (int idx = 0; idx < dimx * 2 ; idx++)
        {
            z_k_j[idx * aligned_ckf + ckf_id] = 0;
            for (int i = 0 ; i < dimx ; i++)
                z_k_j[idx * aligned_ckf + ckf_id] += sing_j[(i * dimx * 2 + idx) * aligned_ckf + ckf_id] * zrlists[iter * aligned_dimx + i ];

            z_k_f[ckf_id] += z_k_j[idx* aligned_ckf + ckf_id] ;
            innCovMatrixSum[ckf_id]  += z_k_j[idx* aligned_ckf + ckf_id] * z_k_j[idx* aligned_ckf + ckf_id];
        }
        z_k_f[ckf_id] = z_k_f[ckf_id]  / (dimx * 2);
        innCovMatrixSum[ckf_id] = innCovMatrixSum[ckf_id] / (dimx * 2);
        innCovMatrixSum[ckf_id] = (innCovMatrixSum[ckf_id] - z_k_f[ckf_id] *z_k_f[ckf_id]) + rlists[ckf_id];

        // calcualte crossCovMatrixSum
        for (int idx = 0; idx < dimx; idx ++)
        {

            crossCovMatrixSum[idx * aligned_ckf + ckf_id] = 0;
            for (int i = 0 ; i < 2 * dimx ; i++)
            {
                crossCovMatrixSum[idx * aligned_ckf + ckf_id] += sing_j[(idx * dimx*2 + i) * aligned_ckf + ckf_id ] * z_k_j[i* aligned_ckf + ckf_id];
            }   
            crossCovMatrixSum[idx * aligned_ckf + ckf_id] = crossCovMatrixSum[idx * aligned_ckf + ckf_id]/ (dimx * 2);
            crossCovMatrixSum[idx * aligned_ckf + ckf_id] = crossCovMatrixSum[idx * aligned_ckf + ckf_id] - x_k_f[idx* aligned_ckf + ckf_id] * z_k_f[ckf_id];

        }

        // calculate zk_diff

        int z_check = (int)yrlists[iter];
        if (z_check == -1)
            zk_diff[ckf_id] = 0;
        else
            zk_diff[ckf_id] = yrlists[iter] - z_k_f[ckf_id];


        // calculate reduce_gain_matrix and (reduce_state_matrix  <==> init_state);
        for (int idx = 0 ; idx < dimx; idx++)
        {
            reduce_gain_matrix[idx * aligned_ckf + ckf_id] =  (crossCovMatrixSum[idx * aligned_ckf + ckf_id] / innCovMatrixSum[ckf_id]);
            init_state[idx * aligned_ckf + ckf_id] =    reduce_gain_matrix[idx * aligned_ckf + ckf_id] * zk_diff[ckf_id] + x_k_f[idx* aligned_ckf + ckf_id];

        }

        for (int idx = 0 ; idx < dimx; idx++)
        {
            init_var[idx * aligned_ckf + ckf_id ] = covMatrixSum[(idx * dimx + idx) * aligned_ckf + ckf_id] - 
                reduce_gain_matrix[idx * aligned_ckf + ckf_id] * innCovMatrixSum[ckf_id] *
                reduce_gain_matrix[idx * aligned_ckf + ckf_id];

        }

        double det_zkinin = zk_diff[ckf_id] * zk_diff[ckf_id] * (1.0f /innCovMatrixSum[ckf_id]);

        if (innCovMatrixSum[ckf_id] <= 0)
            llk[ckf_id] = 0;
        else
            llk[ckf_id] = 0.5 * ((log(innCovMatrixSum[ckf_id])) + 
                                 det_zkinin + log((2.0) * 3.14));

        cummulative[ckf_id] += llk[ckf_id];
    }

}

Antworten auf die Frage(1)

Ihre Antwort auf die Frage