Время выполнения обозначений Big O
Мне дали какой-то код для проработки больших O времени выполнения, может кто-нибудь сказать мне, на правильном ли я пути или нет?
//program1
int i, count = 0, n = 20000;
for(i = 0; i < n * n; i++)
{
count++;
}
Это O (n ^ 2)?
//number2
int i, inner_count = 0, n = 2000000000;
for(i = 0; i < n; i++)
{
inner_count++;
}
это O (n)?
//number3
for(i = 0; i < n; i++)
{
for(j = 0; j < n; j++)
{
count++;
}
}
O (N ^ 2)?
//number4
for(i = 0; i < n; i++)
{
for(j = 0; j < i; j++)
{
for(k = 0; k < j; k++)
{
inner_count++;
}
}
}
Это O (n ^ 3)?
//number5
int i, j, inner_count = 0, n = 30000;
for(i = 0; i < n; i++)
{
for(j = 0; j < i; j++)
{
inner_count++;
}
}
Это один O (n ^ 3)?
//number6
int i, j, k, l, pseudo_inner_count = 0, n = 25;
for(i = 0; i < n; i++)
{
for(j = 0; j < i*i; j++)
{
for(k = 0; k < i*j; k++)
{
pseudo_inner_count++;
for(l = 0; l < 10; l++);
}
}
}
Очень запутался об этом O (n ^ 3) ??
//number7
int i, j, k, pseudo_inner_count = 0, n = 16;
for(i = n; i > 1; i /= 2)
{
for(j = 0; j < n; j++)
{
pseudo_inner_count++;
for(k = 0; k < 50000000; k++);
}
}
На)? (Я становлюсь все более и более потерянным, когда они становятся сложнее)
//number8
int i, j, pseudo_inner_count = 0, n = 1073741824;
for(i = n; i > 1; i /= 2)
{
pseudo_inner_count++;
for(j = 0; j < 50000000; j++);
}
O (N ^ 2)?
еще один, которого я не видел и понятия не имею с {
int i, wrong_count = 0, n = 200;
for(i = 0; i < square(n); i++)
{
wrong_count++;
}
printf("%d %d\n", wrong_count, square(wrong_count));
return 0;
}
int square(int m)
{
int i, j = 0;
for(i = 0; i < m * m; i++)
{
j++;
}
return j;
}
Если бы кто-то мог прояснить это и помочь мне лучше понять их, я был бы очень благодарен.