Posição do sol em função da hora do dia, latitude e longitude - EDIT
Esta pergunta foi feita antes de duas vezes.
Em 2012,Posição do sol em relação à hora do dia, latitude e longitude, Josh O'Brien deu uma nova versão da função sunPosition:
sunPosition <- function(year, month, day, hour=12, min=0, sec=0,
lat=46.5, long=6.5) {
twopi <- 2 * pi
deg2rad <- pi / 180
# Get day of the year, e.g. Feb 1 = 32, Mar 1 = 61 on leap years
month.days <- c(0,31,28,31,30,31,30,31,31,30,31,30)
day <- day + cumsum(month.days)[month]
leapdays <- year %% 4 == 0 & (year %% 400 == 0 | year %% 100 != 0) &
day >= 60 & !(month==2 & day==60)
day[leapdays] <- day[leapdays] + 1
# Get Julian date - 2400000
hour <- hour + min / 60 + sec / 3600 # hour plus fraction
delta <- year - 1949
leap <- trunc(delta / 4) # former leapyears
jd <- 32916.5 + delta * 365 + leap + day + hour / 24
# The input to the Atronomer's almanach is the difference between
# the Julian date and JD 2451545.0 (noon, 1 January 2000)
time <- jd - 51545.
# Ecliptic coordinates
# Mean longitude
mnlong <- 280.460 + .9856474 * time
mnlong <- mnlong %% 360
mnlong[mnlong < 0] <- mnlong[mnlong < 0] + 360
# Mean anomaly
mnanom <- 357.528 + .9856003 * time
mnanom <- mnanom %% 360
mnanom[mnanom < 0] <- mnanom[mnanom < 0] + 360
mnanom <- mnanom * deg2rad
# Ecliptic longitude and obliquity of ecliptic
eclong <- mnlong + 1.915 * sin(mnanom) + 0.020 * sin(2 * mnanom)
eclong <- eclong %% 360
eclong[eclong < 0] <- eclong[eclong < 0] + 360
oblqec <- 23.439 - 0.0000004 * time
eclong <- eclong * deg2rad
oblqec <- oblqec * deg2rad
# Celestial coordinates
# Right ascension and declination
num <- cos(oblqec) * sin(eclong)
den <- cos(eclong)
ra <- atan(num / den)
ra[den < 0] <- ra[den < 0] + pi
ra[den >= 0 & num < 0] <- ra[den >= 0 & num < 0] + twopi
dec <- asin(sin(oblqec) * sin(eclong))
# Local coordinates
# Greenwich mean sidereal time
gmst <- 6.697375 + .0657098242 * time + hour
gmst <- gmst %% 24
gmst[gmst < 0] <- gmst[gmst < 0] + 24.
# Local mean sidereal time
lmst <- gmst + long / 15.
lmst <- lmst %% 24.
lmst[lmst < 0] <- lmst[lmst < 0] + 24.
lmst <- lmst * 15. * deg2rad
# Hour angle
ha <- lmst - ra
ha[ha < -pi] <- ha[ha < -pi] + twopi
ha[ha > pi] <- ha[ha > pi] - twopi
# Latitude to radians
lat <- lat * deg2rad
# Azimuth and elevation
el <- asin(sin(dec) * sin(lat) + cos(dec) * cos(lat) * cos(ha))
az <- asin(-cos(dec) * sin(ha) / cos(el))
# For logic and names, see Spencer, J.W. 1989. Solar Energy. 42(4):353
cosAzPos <- (0 <= sin(dec) - sin(el) * sin(lat))
sinAzNeg <- (sin(az) < 0)
az[cosAzPos & sinAzNeg] <- az[cosAzPos & sinAzNeg] + twopi
az[!cosAzPos] <- pi - az[!cosAzPos]
# if (0 < sin(dec) - sin(el) * sin(lat)) {
# if(sin(az) < 0) az <- az + twopi
# } else {
# az <- pi - az
# }
el <- el / deg2rad
az <- az / deg2rad
lat <- lat / deg2rad
return(list(elevation=el, azimuth=az))
}
Gostaria de calcular a posição do sol ao redor da Nova Caledônia no sudoeste do Pacífico e, por isso, inseri, por exemplo, os seguintes valores:
sunPosition(2017,03,16,12,0,0,-21,164)
$elevation
[1] -61.29637
$azimuth
[1] 220.4036
Mas, do meu ponto de vista, há um problema: neste momento a elevação deve ser positiva. E mesmo comparando com o resultado do site Suncalc, que calcula uma elevação de 70,70 graus.
Então, você poderia me confirmar que, na função, tenho que inserir latitude e longitude em graus, e a data e a hora na hora local? Onde eu estou errado? Ou há um erro no código?