Complexidade temporal de um algoritmo iterativo
Estou tentando encontrar a complexidade do tempo dessaalgoritmo.
O algoritmo iterativo: produz todas as cadeias de bits dentro de uma determinada distância de Hamming, a partir da cadeia de bits de entrada. Gera todas as sequências crescentes0 <= a[0] < ... < a[dist-1] < strlen(num)
e reverte os bits nos índices correspondentes.
O vetora
deve manter índices para os quais os bits devem ser invertidos. Portanto, se a contém o índice atuali
, imprimimos 1 em vez de 0 e vice-versa. Caso contrário, imprimimos o bit como está (veja a outra parte), como mostrado abaixo:
// e.g. hamming("0000", 2);
void hamming(const char* num, size_t dist) {
assert(dist > 0);
vector<int> a(dist);
size_t k = 0, n = strlen(num);
a[k] = -1;
while (true)
if (++a[k] >= n)
if (k == 0)
return;
else {
--k;
continue;
}
else
if (k == dist - 1) {
// this is an O(n) operation and will be called
// (n choose dist) times, in total.
print(num, a);
}
else {
a[k+1] = a[k];
++k;
}
}
Qual é a complexidade de tempo desse algoritmo?
Minha tentativa diz:
dist * n + (n escolha t) * n + 2
mas isso não parece ser verdade, considere os seguintes exemplos, todos com dist = 2:
len = 3, (3 choose 2) = 3 * O(n), 10 while iterations
len = 4, (4 choose 2) = 6 * O(n), 15 while iterations
len = 5, (5 choose 2) = 9 * O(n), 21 while iterations
len = 6, (6 choose 2) = 15 * O(n), 28 while iterations
Aqui estão duas execuções representativas (com a impressão ocorrendo no início do loop):
000, len = 3
k = 0, total_iter = 1
vector a = -1 0
k = 1, total_iter = 2
vector a = 0 0
Paid O(n)
k = 1, total_iter = 3
vector a = 0 1
Paid O(n)
k = 1, total_iter = 4
vector a = 0 2
k = 0, total_iter = 5
vector a = 0 3
k = 1, total_iter = 6
vector a = 1 1
Paid O(n)
k = 1, total_iter = 7
vector a = 1 2
k = 0, total_iter = 8
vector a = 1 3
k = 1, total_iter = 9
vector a = 2 2
k = 0, total_iter = 10
vector a = 2 3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
gsamaras@pythagoras:~/Desktop/generate_bitStrings_HammDistanceT$ ./iter
0000, len = 4
k = 0, total_iter = 1
vector a = -1 0
k = 1, total_iter = 2
vector a = 0 0
Paid O(n)
k = 1, total_iter = 3
vector a = 0 1
Paid O(n)
k = 1, total_iter = 4
vector a = 0 2
Paid O(n)
k = 1, total_iter = 5
vector a = 0 3
k = 0, total_iter = 6
vector a = 0 4
k = 1, total_iter = 7
vector a = 1 1
Paid O(n)
k = 1, total_iter = 8
vector a = 1 2
Paid O(n)
k = 1, total_iter = 9
vector a = 1 3
k = 0, total_iter = 10
vector a = 1 4
k = 1, total_iter = 11
vector a = 2 2
Paid O(n)
k = 1, total_iter = 12
vector a = 2 3
k = 0, total_iter = 13
vector a = 2 4
k = 1, total_iter = 14
vector a = 3 3
k = 0, total_iter = 15
vector a = 3 4