Como executar uma instrução Switch com os quadros de dados Apache Spark (Python)

Estou tentando executar uma operação nos meus dados em que um determinado valor será mapeado para uma lista de valores predeterminados, se corresponder a um dos critérios, ou para um valor de retorno caso contrário.

Este seria o SQL equivalente:

CASE
            WHEN user_agent LIKE \'%CanvasAPI%\' THEN \'api\'
            WHEN user_agent LIKE \'%candroid%\' THEN \'mobile_app_android\'
            WHEN user_agent LIKE \'%iCanvas%\' THEN \'mobile_app_ios\'
            WHEN user_agent LIKE \'%CanvasKit%\' THEN \'mobile_app_ios\'
            WHEN user_agent LIKE \'%Windows NT%\' THEN \'desktop\'
            WHEN user_agent LIKE \'%MacBook%\' THEN \'desktop\'
            WHEN user_agent LIKE \'%iPhone%\' THEN \'mobile\'
            WHEN user_agent LIKE \'%iPod Touch%\' THEN \'mobile\'
            WHEN user_agent LIKE \'%iPad%\' THEN \'mobile\'
            WHEN user_agent LIKE \'%iOS%\' THEN \'mobile\'
            WHEN user_agent LIKE \'%CrOS%\' THEN \'desktop\'
            WHEN user_agent LIKE \'%Android%\' THEN \'mobile\'
            WHEN user_agent LIKE \'%Linux%\' THEN \'desktop\'
            WHEN user_agent LIKE \'%Mac OS%\' THEN \'desktop\'
            WHEN user_agent LIKE \'%Macintosh%\' THEN \'desktop\'
            ELSE \'other_unknown\'
            END AS user_agent_type

Eu sou bastante novo no Spark e, portanto, minha primeira tentativa neste programa usa um dicionário de pesquisa e ajusta os valores linha por linha em umRDD igual a:

USER_AGENT_VALS = {
    'CanvasAPI': 'api',
    'candroid': 'mobile_app_android',
    'iCanvas': 'mobile_app_ios',
    'CanvasKit': 'mobile_app_ios',
    'Windows NT': 'desktop',
    'MacBook': 'desktop',
    'iPhone': 'mobile',
    'iPod Touch': 'mobile',
    'iPad': 'mobile',
    'iOS': 'mobile',
    'CrOS': 'desktop',
    'Android': 'mobile',
    'Linux': 'desktop',
    'Mac OS': 'desktop',
    'Macintosh': 'desktop'
}

def parse_requests(line: list,
                   id_data: dict,
                   user_vals: dict = USER_AGENT_VALS):
    """
    Expects an input list which maps to the following indexes:
        0: user_id
        1: context(course)_id
        2: request_month
        3: user_agent_type

    :param line: A list of values.
    :return: A list
    """
    found = False
    for key, value in user_vals.items():
        if key in line[3]:
            found = True
            line[3] = value
    if not found:
        line[3] = 'other_unknown'
    # Retrieves the session_id count from the id_data dictionary using
    # the user_id as the key.
    session_count = id_data[str(line[0])]
    line.append(session_count)
    line.extend(config3.ETL_LIST)
    return [str(item) for item in line]

Meu código atual possui os dados em umdataframe, e não sei exatamente como executar a operação acima com mais eficiência. Sei que eles são imutáveis, portanto, ele precisa ser retornado como um novo quadro de dados, mas minha pergunta é a melhor forma de fazer isso. Aqui está o meu código:

from boto3 import client
import psycopg2 as ppg2
from pyspark import SparkConf, SparkContext
from pyspark.sql import SQLContext
from pyspark.sql.functions import current_date, date_format, lit, StringType

EMR_CLIENT = client('emr')
conf = SparkConf().setAppName('Canvas Requests Logs')
sc = SparkContext(conf=conf)
sql_context = SQLContext(sc)
# for dependencies
# sc.addPyFile()

USER_AGENT_VALS = {
    'CanvasAPI': 'api',
    'candroid': 'mobile_app_android',
    'iCanvas': 'mobile_app_ios',
    'CanvasKit': 'mobile_app_ios',
    'Windows NT': 'desktop',
    'MacBook': 'desktop',
    'iPhone': 'mobile',
    'iPod Touch': 'mobile',
    'iPad': 'mobile',
    'iOS': 'mobile',
    'CrOS': 'desktop',
    'Android': 'mobile',
    'Linux': 'desktop',
    'Mac OS': 'desktop',
    'Macintosh': 'desktop'
}

if __name__ == '__main__':
    df = sql_context.read.parquet(
        r'/Users/mharris/PycharmProjects/etl3/pyspark/Datasets/'
        r'usage_data.gz.parquet')

    course_data = df.filter(df['context_type'] == 'Course')
    request_data = df.select(
        df['user_id'],
        df['context_id'].alias('course_id'),
        date_format(df['request_timestamp'], 'MM').alias('request_month'),
        df['user_agent']
    )

    sesh_id_data = df.groupBy('user_id').count()

    joined_data = request_data.join(
        sesh_id_data,
        on=request_data['user_id'] == sesh_id_data['user_id']
    ).drop(sesh_id_data['user_id'])

    all_fields = joined_data.withColumn(
        'etl_requests_usage', lit('DEV')
    ).withColumn(
        'etl_datetime_local', current_date()
    ).withColumn(
        'etl_transformation_name', lit('agg_canvas_logs_user_agent_types')
    ).withColumn(
        'etl_pdi_version', lit(r'Apache Spark')
    ).withColumn(
        'etl_pdi_build_version', lit(r'1.6.1')
    ).withColumn(
        'etl_pdi_hostname', lit(r'N/A')
    ).withColumn(
        'etl_pdi_ipaddress', lit(r'N/A')
    ).withColumn(
        'etl_checksum_md5', lit(r'N/A')
    )

Como PS, existe uma maneira melhor de adicionar colunas do que a maneira como eu fiz isso?

questionAnswers(1)

yourAnswerToTheQuestion