Por que Haskell não aceita minha definição combinatória de "zip"?

Esta é a função zip do livro:

zip :: [a] -> [a] -> [(a,a)]
zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

Perguntei anteriormente no #haskell se o "zip" poderia ser implementado usando "foldr" sozinho, sem recursão, sem correspondência de padrões. Depois de pensar um pouco, percebemos que a recursão poderia ser eliminada usando continuações:

zip' :: [a] -> [a] -> [(a,a)]
zip' = foldr cons nil
    where
        cons h t (y:ys) = (h,y) : (t ys)
        cons h t []     = []
        nil             = const []

Ainda nos resta a correspondência de padrões. Depois de mais algumas brindes de neurônios, tive uma resposta incompleta que achei lógica:

zip :: [a] -> [a] -> [a]
zip a b = (zipper a) (zipper b) where
    zipper = foldr (\ x xs cont -> x : cont xs) (const [])

Ele retorna uma lista simples, mas faz o fechamento. Eu tinha certeza de que fazia sentido, mas Haskell reclamou do tipo. Comecei a testá-lo em uma calculadora lambda sem tipo e funcionou. Por que Haskell não pode aceitar minha função?

O erro é:

zip.hs:17:19:
    Occurs check: cannot construct the infinite type:
      t0 ~ (t0 -> [a]) -> [a]
    Expected type: a -> ((t0 -> [a]) -> [a]) -> (t0 -> [a]) -> [a]
      Actual type: a
                   -> ((t0 -> [a]) -> [a]) -> (((t0 -> [a]) -> [a]) -> [a]) -> [a]
    Relevant bindings include
      b ∷ [a] (bound at zip.hs:17:7)
      a ∷ [a] (bound at zip.hs:17:5)
      zip ∷ [a] -> [a] -> [a] (bound at zip.hs:17:1)
    In the first argument of ‘foldr’, namely ‘cons’
    In the expression: ((foldr cons nil a) (foldr cons nil b))

zip.hs:17:38:
    Occurs check: cannot construct the infinite type:
      t0 ~ (t0 -> [a]) -> [a]
    Expected type: a -> (t0 -> [a]) -> t0 -> [a]
      Actual type: a -> (t0 -> [a]) -> ((t0 -> [a]) -> [a]) -> [a]
    Relevant bindings include
      b ∷ [a] (bound at zip.hs:17:7)
      a ∷ [a] (bound at zip.hs:17:5)
      zip ∷ [a] -> [a] -> [a] (bound at zip.hs:17:1)
    In the first argument of ‘foldr’, namely ‘cons’
    In the fourth argument of ‘foldr’, namely ‘(foldr cons nil b)’

questionAnswers(3)

yourAnswerToTheQuestion