Это много вопросов одновременно ... чтобы повторить мой ответ в ссылке для внутренней модели, вам нужно отбросить перехват данных, то есть подключить X <- X [, -1] после первой строки.

ользованиемplm Пакет в R, чтобы соответствовать модели с фиксированными эффектами, каков правильный синтаксис для добавления отстающей переменной в модель? Аналогично команде «L1.variable» в Stata.

Вот моя попытка добавить задержанную переменную (это тестовая модель, которая может не иметь смысла):

library(foreign)
nlswork <- read.dta("http://www.stata-press.com/data/r11/nlswork.dta")
pnlswork <- plm.data(nlswork, c('idcode', 'year'))
ffe <- plm(ln_wage ~ ttl_exp+lag(wks_work,1)
           , model = 'within'
           , data = nlswork)
summary(ffe)

R выход:

Oneway (individual) effect Within Model

Call:
plm(formula = ln_wage ~ ttl_exp + lag(wks_work), data = nlswork, 
    model = "within")

Unbalanced Panel: n=3911, T=1-14, N=19619

Residuals :
    Min.  1st Qu.   Median  3rd Qu.     Max. 
-1.77000 -0.10100  0.00293  0.11000  2.90000 

Coefficients :
                Estimate Std. Error t-value  Pr(>|t|)    
ttl_exp       0.02341057 0.00073832 31.7078 < 2.2e-16 ***
lag(wks_work) 0.00081576 0.00010628  7.6755 1.744e-14 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares:    1296.9
Residual Sum of Squares: 1126.9
R-Squared:      0.13105
Adj. R-Squared: -0.085379
F-statistic: 1184.39 on 2 and 15706 DF, p-value: < 2.22e-16

Тем не менее, я получил разные результаты по сравнению с тем, что производит Stata.

В моей реальной модели я хотел бы измерить эндогенную переменную с ее запаздывающим значением.

Спасибо!

Для справки вот код Stata:

webuse nlswork.dta
xtset idcode year
xtreg ln_wage ttl_exp L1.wks_work, fe

Вывод Stata:

Fixed-effects (within) regression               Number of obs     =     10,680
Group variable: idcode                          Number of groups  =      3,671

R-sq:                                           Obs per group:
     within  = 0.1492                                         min =          1
     between = 0.2063                                         avg =        2.9
     overall = 0.1483                                         max =          8

                                                F(2,7007)         =     614.60
corr(u_i, Xb)  = 0.1329                         Prob > F          =     0.0000

------------------------------------------------------------------------------
     ln_wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
     ttl_exp |   .0192578   .0012233    15.74   0.000     .0168597    .0216558
             |
    wks_work |
         L1. |   .0015891   .0001957     8.12   0.000     .0012054    .0019728
             |
       _cons |   1.502879   .0075431   199.24   0.000     1.488092    1.517666
-------------+----------------------------------------------------------------
     sigma_u |  .40678942
     sigma_e |  .28124886
         rho |  .67658275   (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(3670, 7007) = 4.71                  Prob > F = 0.0000

Ответы на вопрос(1)

Ваш ответ на вопрос